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Chapter 1  

Introduction 

1.1 The golden age of after-sales services 

In the current business environment, equipment availability is generally crucial for a company’s 

operations. For such so-called mission critical equipment (Kim et al., 2010), an operational 

failure resulting in downtime is highly undesirable and can indeed be very costly: in the 

semiconductor industry, for instance, an hour of downtime can amount to a loss of productivity 

of tens of thousands of euro’s (Kranenburg, 2006). Equipment failure can also have severe 

consequences in terms of safety and security. For instance, malfunctioning parts aboard an 

aircraft can lead to a crash, as was the case with Turkish Airlines flight 1951 in 2009, where a 

malfunctioning radio altimeter triggered the crash of the plane, killing nine people. 

To protect themselves from such consequences, users of critical equipment require services for 

system upkeep for the time that the system is being used. Examples of such services are 

inspections and preventive maintenance activities to limit the number of failures that occur, 

repair activities once failures occur (i.e. corrective maintenance), upgrades and equipment 

overhauls, and technical support. Often, users are unable or unwilling to provide all these 

services themselves. Therefore, they demand such services from the equipment suppliers or 

manufacturers. In turn, suppliers increasingly find these services to be a source of large 

revenues and profit margins (Cohen et al., 2006). The fact that customers value equipment 

availability highly means that they are willing to pay an additional fee for these services, often 

resulting in higher profit margins for suppliers (OEM’s) than those received on the sales of the 

equipment itself. Furthermore, the revenues tend to be constant over the (generally long) life 

cycle of the system (Oliva and Kallenberg, 2003). Such a constant revenue stream is particularly 

beneficial for companies whose overall revenue and profits are highly sensitive to economic or 

market fluctuations. An example of such a company is ASML, a manufacturer of lithography 

equipment for the semiconductor industry. 

As a result of these trends, we are currently in the golden age of after-sales services (Cohen et 

al., 2006), where revenues can range between 25% and 60% of a company’s total revenues 

(Deloitte, 2007). Service providers can exploit various business models for after-sales services, 

as shown in Figure 1.1. On the one hand, simple ad hoc models may be considered, where users 

pay for support as needed. Under such models, also referred to as time and material contracts 
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(Cohen, 2012), the service provider is compensated based on the amount of resources 

consumed (e.g. labor, spare parts), with no guarantees being provided on service performance 

(such as a minimum system uptime fraction). Conversely, more sophisticated business models 

can be considered, such as performance based contracting or ‘power by the hour’ type models, 

where payment to the service provider reflects the value the user attributes to equipment 

availability. Guajardo et al. (2012) give an example of performance based contracting in the 

aircraft engine industry, where a service provider is paid in proportion to the number of aircraft 

flying hours, which is affected by the uptime of the engine. In power by the hour models, the 

manufacturer often retains equipment ownership, with the user paying for the services used. 

An example of a company that uses such models is Océ Technologies, a manufacturer of printing 

equipment in the Netherlands. At Océ, many customers are only interested in having printing 

capability rather than owning the printing equipment itself. Océ therefore has business models 

where customers pay an amount of money for every 1000 prints, with the equipment 

manufacturer retaining ownership and therefore being fully responsible for maintenance. In 

such sophisticated models, service providers often formalize agreements with their customers 

in so-called service contracts. 

The remainder of this chapter is as follows. In Section 1.2, we first discuss service contracts in 

more detail. We then elaborate on the activities and resources needed for service contract 

fulfillment in Sections 1.3 and 1.4 respectively. In Section 1.5, we address service level 

differentiation, which is a key issue in this dissertation. Next, we state our main research goal in 

Section 1.6, and elaborate on related literature in Section 1.7. In Section 1.8, we state our main 

contribution and detailed research objectives. To meet these objectives, we require certain 

techniques which are discussed in Section 1.9. Finally, we present an outline of the remainder of 

this dissertation in Section 1.10. 
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Figure 1.1 Models for after-sales services (source: Cohen et al., 2006). 

1.2 Service contracts and service level agreements 

As mentioned, our focus is on complex systems that are crucial to customers’ operations. As a 

result, clear agreements are necessary between the service provider (either the original 

equipment manufacturer, OEM, or an external service provider) and its customers with respect 

to the services required. Such agreements are formalized in service contracts, in which the 

service provider specifies the service activities it provides. Service contracts often contain 

service level agreements (SLAs), that may be based on a wide range of performance indicators. 

Case studies at Océ Technologies and Philips Healthcare (a manufacturer of medical image 

processing equipment in the Netherlands) revealed that SLAs were made on the maximum 

waiting time for an engineer once a failure occurs (i.e. the response time), on the maximum 

amount of downtime per failure, and on the minimum fraction of system uptime, amongst 

others. These indicators reflect the importance that customers place on system availability: 

users of critical equipment are primarily interested in the capability that the equipment 

provides, which translates into requirements on availability. The specifics of maintaining the 

equipment, such as resources and activities needed for repair, are not relevant, especially if the 

user does not own the equipment itself. In practice, we see that increasingly high service levels 

are being demanded, such as minimum uptime fractions of at least 96%, and average response 

times of 3 to 4 hours. In the semiconductor industry, response time targets may even be 15 
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minutes (Cohen et al., 2006). To ensure that the agreements are met, the service contract may 

also stipulate penalties if the service provider is unable to meet the contract requirements. An 

example of a company where such penalties apply is Thales Netherlands, a producer of 

electronic equipment such as radar systems for defense applications (Al Hanbali and Van der 

Heijden, 2011). 

Given the performance indicators agreed upon and the associated service levels, the service 

provider must design its service fulfillment process such that all agreements are met at 

minimum costs. This is far from trivial. First, service providers often have little insight in the 

logistic costs that are necessary to guarantee a specific service level. Indeed, in practice we see 

that service agreements are made which subsequently cannot be met using the service 

provider’s current service organization. Second, even if a service provider has insight in the 

relation between service levels and logistic costs, it remains a difficult matter to ensure that all 

service agreements are met. In particular, the system uptime depends on various factors, some 

of which are not entirely within the service provider’s control. For instance, the system failure 

rate also depends on the utilization and operating conditions of the system, amongst others. In 

practice, the customer performance indicators are often translated into more concrete internal 

performance indicators on different aspects of the fulfillment process, such as the waiting time 

for engineers or spare parts. Given such more manageable indicators, we present control 

options to make the trade-off between the required level of service and the associated costs.  

We now first elaborate on the fulfillment process itself, specifically the process of repairing 

systems once a failure occurs (i.e. corrective maintenance). We do realize that fulfillment can 

also take place through preventive maintenance. However, corrective maintenance is generally 

much more unpredictable than preventive maintenance and tends to occur at very inconvenient 

times. Indeed, failures generally occur at moments when the system is being heavily utilized 

(with failures often being the result of intensive system use). In contrast, preventive 

maintenance can often be scheduled at convenient moments. For instance, preventive 

maintenance of baggage handling systems at airports generally occurs at night. Furthermore, 

preventive maintenance is only beneficial for components that exhibit wear-out (i.e. have an 

increasing hazard function (Kumar et al., 2000)). For other types of components, preventive 

maintenance does not improve the system’s reliability. For instance, a case study at Océ 

technologies revealed that certain printers have various (electronic) components with a 

constant failure rate. Preventive maintenance thus has very limited influence on the failure 

behavior of these printers. 
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1.3 The corrective maintenance process 

To understand how service providers can effectively offer service to their customers, we 

consider the corrective maintenance process provided by a manufacturer of healthcare 

equipment (Figure 1.2). 

 

Figure 1.2 Typical steps in a corrective maintenance process (Prakken, 2009). 

After a failure occurs, the customer contacts the service provider (in this case the 

manufacturer), who assigns an engineer to that customer when available. The engineer will first 

attempt to remotely diagnose the problem, for instance by phone or by logging on to the 

system. In some cases, a remote repair will be possible. Alternatively, a spare part may be 

necessary for the repair. This part will then be sent to the customer and the engineer will travel 

to the customer’s site to install it. A third option is that remote diagnosis is not possible. Then, 

the engineer must diagnose the problem at the customer’s site, which could reveal the need for 

a spare part. This part is then ordered and the engineer will need to return to install the part at 

a later time. In some cases, the system might still not function after a repair. Then, the 

diagnosis, supply, and repair steps continue until the system is functioning again.  

Clearly, various resources are needed for corrective maintenance, such as service engineers 

with the right expertise, tools for diagnosis and repair, spare parts to replace failed items, and 

so forth. The speed of the corrective maintenance process, and hence the availability of the 

system, thus depends on the availability of these resources during the process. Conversely, a 

minimum availability requirement can be translated into a maximum delay time in the 

corrective maintenance process. Specifically, we express availability as follows (Dinesh Kumar, 

2000): 
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����	�
�	��� = �������� + ���� + ���� 
(1.1) 

Here, ���� denotes the mean time between failures, ���� denotes the mean time to repair 

(i.e. the actual repair time when all resources and parts are available), and ���� denotes the 

mean logistic delay time, which is the time waiting for all resources and parts to become 

available. Hence, given that the mean time between failures and the mean repair time are 

known, an availability value can be translated into an allowed delay for obtaining resources. 

Below, we further elaborate on the resources required in the service fulfillment process.  

1.4 Resources needed for service contract fulfillment 

In general, various resources are needed for the repair process, such as spare parts, service 

engineers and tools. A key issue with respect to these resources is that they generally have to 

be deployed in advance of the actual failures to ensure that service requirements are met 

(Cohen et al., 2006). However, these resources are scarce and can be very expensive. In 

practice, modules or parts (e.g. aircraft engines) can have values of well over 100.000 euro. 

Furthermore, failures of complex and critical systems generally occur infrequently and at 

random moments in time (Kim et al., 2010). Therefore, service providers find it difficult to 

determine how many resources they require and where these resources should be located.  

1.4.1 Service engineers 

The diagnosis and repair activities are performed by service engineers. In contrast to consumer 

goods, which are usually serviced at a repair facility, engineers in the capital goods industry 

generally travel to customers’ facilities to perform maintenance (Armistead and Clark, 1991). 

Therefore, a key performance measure is response time, which is the time between the 

reporting of the failure and the arrival of the engineer at the customer’s site (see e.g. Tang et 

al., 2008).   

Jalil (2011) distinguishes three levels at which decisions with respect to service engineers must 

be made, namely a strategic, tactical, and operational level. At the strategic level, the service 

area must be disaggregated into sub-areas, with each sub-area having a separate pool of service 

engineers. Usually, the installed base of the service provider (i.e. the set of systems it should 

service) is dispersed over a large geographical area. As a result, travel distances to customers 

can be extensive,  which makes it impractical – or even infeasible – to service all customers from 

a single service point. Therefore, various service points are located across the entire service 

area, with customers mainly being serviced by the closest service point. At the tactical level, 

there is the so-called manpower planning problem: The number of engineers and their skills 

must be determined per sub-area such that response time targets are met at minimal costs. This 

problem is closely related to engineer utilization, i.e. the fraction of time the engineer spends on 

travel and repair: high utilization rates might result in engineers not meeting response time 
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requirements, whereas a low utilization rate indicates that engineers are not used efficiently 

(Tang et al., 2008). Finally, at the operational level dispatching rules should be chosen for 

dispatching available engineers to customers. Various dispatching rules have been discussed in 

the literature, such as first-in-first-out (FIFO) rules and rules that depend on customers’ 

response time targets (e.g. the earliest expiration time, which is comparable to the earliest due 

date (EDD) in a manufacturing environment, see e.g. Haugen and Hill (1999)). We refer to Jalil 

(2011) for a literature overview.  

1.4.2 Spare parts supply 

In the corrective maintenance process, failures are often solved through repair by replacement: 

a defective part is removed from the system and replaced by a functioning one. Any delay in 

shipping the required part will result in an increased mean logistic delay time, and thus has an 

impact on availability. Hence, a key performance indicator is the downtime waiting for parts 

(DTWP), the time that elapses between the moment a part is requested and its availability at 

the customer’s site. 

The systems we consider usually have a multi-indenture product structure. In spare parts 

optimization literature, an indenture level indicates a level in the Bill-Of-Materials (BOM) 

structure at which repairs are performed. At the highest indenture level, we find the first 

indenture items or so-called Line Replaceable Units (LRUs), usually the modules or main 

components of which the system is made up. System repair can occur by replacing a faulty LRU 

by a new one. The faulty LRU, in turn, is sent to a repair shop where it can be repaired by 

replacing a defective subcomponent, a so-called Shop Replaceable Unit (SRU). Possibly, some 

SRUs can also be repaired by replacing cheaper parts, and so forth. As a result, we require a 

diverse and extensive set of spare parts. The supply of these parts occurs through a spare parts 

supply chain, consisting of various stock points. To service a widely dispersed installed base, 

stock is kept both at locations close to customers – or possibly even at customers’ sites – for fast 

supply times in case of failures and at central stock locations where stock is pooled both for 

resupplying the local stock points and possibly for satisfying customer demand through an 

emergency shipment if the local stock points are out of stock. Such a structure is referred to as a 

multi-echelon structure, where lower echelons (e.g. local stock points) are resupplied by higher 

echelons (i.e. central locations). Figure 1.3 and Figure 1.4 give examples of the multi-indenture 

structure and the multi-echelon structure respectively, with the multi-echelon structure based 

on the setting at Thales Netherlands. 
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Figure 1.3 Example of a multi-indenture structure.  Figure 1.4 Example of a multi-echelon structure. 

The waiting time for parts depends on (i) the amount of stock kept in the system at various 

locations and indenture levels, and (ii) the throughput times between stock points and from 

stock points to customers. With respect to the amount of stock kept, we first note that most 

components of technologically complex systems are expensive, and therefore are preferably 

repairable, and generally have low demand rates (so-called slow movers). As a result, their 

inventory is often controlled using one-for-one replenishment policies (i.e. base stock � − 1, � 

policies), since their holding costs generally outweigh their order costs and they are infrequently 

requested. For each item, we thus need to determine a base stock level at each of the various 

locations in the system. A key issue in doing so is that spare parts are only kept in stock to 

ensure the availability of the system as a whole, which is accomplished by determining suitable 

availability levels for each individual part. As a result, a so-called system approach (Sherbrooke, 

2004) is required, where stock levels are jointly determined for all items such that a certain 

system uptime is guaranteed. The idea behind this approach is that inexpensive high demand 

parts should be available immediately (and thus have high stock levels), while the waiting time 

for expensive low demand parts can be somewhat longer.  

The amount of literature on (multi-item) spare parts optimization models is extensive and dates 

back to Sherbrooke (1968), who developed the METRIC (Multi-Echelon Technique for 

Recoverable Item Control) model. Sherbrooke (2004) and Muckstadt (2005) give an overview of 

further developments in this area. Generic models often consider multi-echelon settings, with 

demand arriving at locations at the lowest echelon level according to Poisson processes and 

one-for-one replenishment being used at all locations. All items are repairable (i.e. no 

condemnation occurs), and repair may occur at various locations, depending on the level of 

complexity. A key assumption with respect to system evaluation is that the number of 

outstanding orders at the base follows a Poisson distribution. Optimization occurs by a stepwise 

increase of stock levels in a greedy ‘biggest-bang-for the-buck’ manner (also referred to as 

marginal analysis), where iteratively the option is selected that gives the largest contribution 

according to some criterion (such as the largest decrease in the mean backorder level per dollar 
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additional investment). These iterations are repeated until some stopping criterion (e.g. a 

desired mean backorder sum) is satisfied. Various extensions have been made to the METRIC 

model, notably MOD-METRIC (Muckstadt (1973, 1979)) that incorporates multi-indenture 

product structures, and VARI-METRIC  (Slay (1984), Graves (1985), Sherbrooke (1986)) that 

more accurately estimates the distribution of outstanding orders at each base.  

In addition to stock levels, waiting time is also influenced by the throughput times in the supply 

chain, such as item repair times or shipment times from upstream locations in the chain to 

downstream locations. Usually, throughput times can be influenced to some extent at a certain 

price, for instance by using priority rules in the repair shop, or by satisfying a fraction of demand 

using a faster (but also more expensive) shipment option instead of regular supply. An example 

of a company that uses such options is Thales Netherlands. Two common shipment options 

considered both in literature and in practice are (i) lateral transshipments, which are used when 

a preferred location is out of stock, but a location on the same echelon level has the part on-

hand, and (ii) emergency shipments, where demand is met from stock at a higher echelon level 

when the preferred stock facility is out of stock. As a result of these possibilities to reduce 

throughput times, a trade-off exists between the amount of stock that must be kept and the 

throughput time: if throughput times are shortened, the same quality of service can be provided 

with a smaller stock pool. 

1.4.3 Tools 

Various service tools might also be required during the corrective maintenance process, for 

instance diagnostic and calibration tools. Like spare parts, tools have low demand rates and can 

be very expensive (up to hundreds of thousands of euro’s). In contrast to spare parts, however, 

tools are never consumed during repair. Furthermore, various tools are often needed 

simultaneously (so-called coupling in demand, see Vliegen (2009)). Tools are often combined in 

so-called tool kits that can be used for multiple types of repairs. We refer to Vliegen (2009) for 

literature in this area.  

Often tools are small and therefore as mobile as spare parts and service engineers. However, 

certain tools can be very large and therefore difficult to move. For instance, to replace the 

bogies on trains, specialized equipment is needed to lift the trains. Similarly, ships have to be 

placed in docks for certain kinds of repairs. The location of such tools influences where 

components can be repaired, as certain repairs can only occur if these tools are available. This is 

one of the issues addressed in a so-called level of repair analysis (LORA). The focus of LORA is to 

determine whether a component should be repaired upon failure and, if so, at what repair 

location. Decisions are also made with respect to the location of service tools. The objective is 

to minimize life cycle costs. We refer to Basten (2010) for a review of literature on LORA.   
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1.5 Service level differentiation 

A complication in designing the fulfillment process is that customers value services differently. A 

system might be crucial for one customer’s operations, whereas it is less crucial for another 

customer. For instance, the uptime of mainframe computers at a stock exchange will be much 

more crucial than the availability of a computer in a regular office environment. The number of 

systems a customer uses also determines the severity of downtime. If a company has various 

printers, for instance, the unavailability of one printer will not have large consequences, 

especially if employees can easily forward their printing jobs to another printer. In contrast, if a 

company only has a single printer, downtime will be very undesirable. As a result of these 

differences, certain customers will require very high service levels (e.g. an uptime fraction of 

98% or more), and therefore take an expensive service contract, whereas cost oriented 

customers can opt for a less expensive contract and accept greater delays (leading to a smaller 

uptime fraction). The overall customer pool can thus be divided into various customer segments 

that must all be served from a single organization. 

In practice, service providers primarily handle the heterogeneity in service levels by using 

priority rules when assigning service engineers to customers. At Océ Technologies, for instance, 

an engineer is always assigned to the highest priority customer. Differentiation in spare parts 

supply, on the other hand, is handled in one of two extreme ways. At one extreme, all 

customers are provided with uniform service (a so-called “one-size-fits-all” approach), with the 

supply process designed to meet high service levels. As a result, this option is very costly, since 

customers with standard contracts receive better service than their contract requires. In 

contrast, service levels of premium customers may not always be attained, because the 

resources may have been used for standard customers instead. Also, standard customers have 

no incentive to switch to a premium contract if their system becomes more critical in their 

operations, since they already receive high service. At the other extreme, service providers use 

differentiated supply chains for each customer segment. For instance, stock for premium 

customers might be kept close to their sites to minimize downtime, while stock for standard 

customers is kept at some central location resulting in longer lead times. Such supply chains 

become difficult to handle when they interact (because they share resources). Also, separate 

stock piles reduce the benefits of stock pooling compared to the case where all stock is kept 

centrally (Eppen and Schrage, 1981), which may lead to higher overall stock levels.  

The literature on service differentiation in spare parts supply has focused on a solution between 

these two extremes, with stock rationing or the so-called critical level policy being the main 

differentiation tool. The critical level policy keeps stock for all customers at a central location, 

but reserves part of this stock for requests from high priority customers. Specifically, demand 

for lower priority customers is only met from available stock if this stock exceeds a threshold 
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value (i.e. a critical level). We refer to Teunter and Klein Haneveld (2008) for a literature review 

in this area.  

In theory, rationing can lead to large cost savings compared to one-size-fits-all approaches. 

However, there are practical drawbacks to using this approach. First of all, the service engineers 

who repair the systems usually are accountable for the speed of repair. As these engineers 

often have also developed a relationship with their customers – for instance, because they 

always service the same customers – they opt to use an available part for a non-premium 

customer anyway. Second, customers have access to stock information at certain service 

providers. These service providers then become reluctant to refuse a part to non-premium 

customers when the latter can see that the part is actually available. For example, a case study 

at Philips Healthcare revealed that critical level policies were not used for this reason at the 

time of research. 

1.6 Research goal  

Our aim is to determine the added value of various control options for service contract 

fulfillment, particularly in settings with differentiated service levels. We mainly focus on control 

options in spare parts supply. However, as shown in Section 1.2, system downtime depends on 

various additional resources, such as service engineers. Indeed, a case study at Océ technologies 

showed that the waiting time for service engineers exceeded the waiting time for spare parts. 

Therefore, we also investigate the added value of applying differentiation with respect to 

service engineer utilization. 

Our first research area is the application of differentiation on an item level in spare parts supply 

by selectively reducing item throughput times in a multi-echelon multi-indenture setting. To 

this end, we allow repair times and lead times between locations to be decision variables in 

addition to the stock levels in the system. Our aim is to investigate whether the reduction of 

throughput times for certain items can result in a significant reduction in the stock levels 

required in the system. 

Our second research area focuses on applying differentiation in spare parts supply on both an 

item and a customer level. Specifically, we investigate control options to differentiate service to 

customers based on their service requirements. Our aim is to consider control options that are 

as effective as critical level policies in terms of cost savings over one-size-fits-all policies, while 

being easier to implement in practice. Therefore, we investigate the following options:  

• Selective emergency shipments: in this case, stock is used to satisfy demand from all 

customers if possible. If a location is out of stock, the service provider often has the 

option to procure the part at a higher echelon level using an emergency shipment. 

Generally, emergency shipments are both faster and more expensive than waiting for an 
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item to arrive through regular replenishment. Differentiation occurs by using emergency 

shipments for specific customer segments and/or types of items.  

• Selective lateral transshipments: as with selective emergency shipments, service 

providers sometimes have the option to request transshipments from other locations at 

the same echelon level in the system to satisfy demand in out-of-stock settings. 

Differentiation again occurs by limiting the use of this option to premium customers and 

specific item types. 

• Dedicated customer stocks: in practice, dedicated stocks of items are sometimes kept at 

certain customers’ locations in addition to stock kept at central stock points to minimize 

waiting time for spares. So far, the added value of this form of customer differentiation 

has not been analyzed from a scientific point of view. 

A benefit of these options is that stock does not need to be withheld from a non-premium 

customer when his system fails. Still, differentiated service can be provided by reserving lateral 

and emergency shipments for high priority customers, or by placing reserved stock directly at 

those customers’ sites. We evaluate the added value of these options by using one-size-fits-all 

policies and critical level policies as benchmarks. Furthermore, we investigate the added value 

of combining individual control options for differentiation in one aggregate policy. 

Finally, we elaborate on the possibility of applying service differentiation in other activities in 

the maintenance process. Specifically, we investigate the added value of using priority 

mechanisms when assigning service engineers to customers at a tactical level. 

1.6.1 Main research objective 

Our main research objective can be formulated as follows: 

To develop mathematical models that give insight in the added value of the various control 

options for the fulfillment of, possibly differentiated, service levels agreed upon with 

customers. 

Key elements of this research objective are: 

• Models: We focus on developing mathematical models to analyze systems under various 

control options. These models allow us to evaluate a system for a given control option, 

resulting in accurate estimates of the system’s performance, and determine decision 

variables such that the (differentiated) service levels are met at minimum costs.  

• Insight in added value: for each control option, we investigate for what kinds of systems 

(e.g. for what shipment time values) and item types the option leads to significant cost 

savings. 
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• Service levels: we focus on system downtime that is caused by lack of resources such as 

service engineers and spare parts. Specifically, we consider the response times for 

service engineers and the waiting time for spare parts. In both cases, we focus on 

average times, instead of maximum times that must apply for each failure separately.  

1.7 Literature  

In this section, we present a detailed overview of the literature related to our area of research. 

We first focus on the literature related to spare parts supply for expensive slow moving items, 

starting with a general overview of multi-echelon multi-indenture systems (Section 1.7.1). 

Subsequently, we focus on literature considering throughput time differentiation (Section 

1.7.2), service differentiation (Section 1.7.3), and lateral transshipments and emergency 

shipments (Section 1.7.4). Finally, we discuss literature on service engineers (Section 1.7.5). At 

the end of each section, we shortly highlight the key observations for that section.  

1.7.1 Multi-echelon multi-indenture systems 

We first focus on the setting where unmet demand is backordered, starting with approaches for 

system evaluation and then proceeding to system optimization. Subsequently, we briefly discuss 

variants where unmet demand is lost to the system (with such demand being satisfied using 

alternative options such as emergency shipments). 

As mentioned before, the evaluation of multi-echelon multi-indenture systems starts with the 

METRIC model of Sherbrooke. Various extensions have been made to this model, e.g. by 

Muckstadt (1973, 1979) who incorporates two-indenture product structures. Furthermore, 

approaches have been developed to more accurately estimate the distribution of the number of 

outstanding orders (i.e. the pipeline) at each base. A two-moment approximation technique has 

been considered (Slay (1984), Graves (1986), Sherbrooke (1986)), where the pipeline 

distribution is approximated by a negative binomial distribution from the pipeline mean and 

variance. This improved approximation technique culminated in VARI-METRIC, which can be 

used in multi-echelon multi-indenture settings. Exact optimization approaches have also been 

developed by Graves (1985) for a multi-echelon single-indenture setting and Rustenburg et al. 

(2003) for a multi-echelon multi-indenture setting where commonality may apply (i.e. a 

subassembly may be used in different systems).  

In addition to system evaluation, approaches have been developed for setting stock levels that 

minimize the total investment. This has been done both for cost models (with penalty costs for 

backordered demand incorporated into the cost function) and service models (where a target 

service level needs to be satisfied), cf. Van Houtum and Zijm (2000). In cost models, the lack of 

service restrictions allows a multi-item problem to be decomposed into single-item problems 

that can each be solved individually. In this area, single-item models are therefore considered. 



1.7. Literature 

14 

 

Contributions are, amongst others, by Axsäter (1990), who considers an exact optimization 

approach, and Gallego et al. (2007), Rong et al. (2010) and Basten and Van Houtum (2013), who 

consider heuristic methods. In contrast, service models often are multi-item models. 

Contributions in this area are, amongst others, by Hopp et al. (1999), Caglar et al. (2004), Wong 

et al. (2007a), and Caggiano et al. (2007). The first three models have restrictions on the 

aggregate mean waiting time, while Caggiano et al. consider time-based fill rate restrictions (i.e. 

the minimum fraction of demands that must be met within specific time intervals). Nowicki et 

al. (2012) developed an approach to improve the efficiency of optimization through marginal 

analysis in METRIC-type models. Note that cost models are equivalent to service models under 

certain conditions (Van Houtum and Zijm, 2000).  

The literature discussed so far considers models where demand is backordered if it cannot be 

met from on-hand stock. In contrast, the amount of papers considering multi-echelon lost sales 

systems is much more limited. A key reason for this is that lost sales models are much more 

difficult to analyze than their backorder counterparts (Bijvank and Vis, 2011). To our knowledge, 

research in this area is limited to single-indenture two-echelon models, such as Andersson and 

Melchiors (2001) and Hill et al. (2007). In the literature on emergency shipments we also find 

such models (see Section 1.7.4). We refer to Bijvank and Vis (2011) for details and further 

references.   

In summary, multi-echelon multi-indenture systems have been studied extensively under full 

backordering, with various (exact and approximate) approaches being given for both system 

analysis and optimization. Under lost sales, in contrast, the types of systems studied are much 

more limited. 

1.7.2 Joint optimization of inventories and throughput times  

In the literature of the previous section, throughput times such as repair times and 

replenishment lead times from higher echelon locations to lower echelon locations are given as 

parameters. In the last decades, several models have been developed that jointly consider, 

amongst others, stocking levels and throughput times. We discuss literature at strategic, tactical 

and operational levels. 

At a strategic level, joint decisions are made on stock levels and repair locations, taking into 

account the costs of resources required, as discussed by Alfredsson (1997) and Basten et al. 

(2012a) amongst others. Papers such as Rappold and Van Roo (2009) and Wu et al. (2011) even 

combine the spare part stocking problem with facility location analysis, including the location 

and number of stock points in the system. Rappold and Van Roo (2009) focus on a single-item, 

single-indenture setting with finite repair capacity, where both the location and capacity of 

repair facilities are decision variables. Wu et al. (2011) focus on a multi-indenture case where 

multiple shipment modes are possible from higher to lower echelon locations.  
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At a tactical level, the focus lies on jointly optimizing spare parts levels and repair and supply 

processes. Both models with multiple shipment options and models with finite repair capacity 

have been considered, with the latter models focusing both on the number of repair servers 

needed and the priority setting when repairing items. In the area of multiple shipment modes, 

Verrijdt et al. (1998) consider a single item model to show the impact of emergency repairs if 

the stock level drops below a certain threshold value. Perlman et al. (2001) consider a single-

item, two-echelon model with finite capacity repair shops and assume that emergency repair is 

applied with a certain probability. Levner et al. (2011) also consider a single-item two echelon 

model with multiple supply alternatives. They consider both the possibility of repairing items at 

a repair facility with infinite capacity or purchasing new items at an external supplier. 

Furthermore, the repair facility has two repair modes (fast and slow), with the fast option being 

both faster and more expensive. Kutanoglu and Lohiya (2008) consider a single-echelon single-

item system with multiple stock facilities where replenishments to a customer can occur 

through multiple shipment modes (that vary in terms of speed and costs). As a last resort, an 

emergency shipment from a central facility with infinite stock can be used. Van Utterbeeck et al. 

(2009) focus on the design of a supply chain, with key decisions being whether the system 

should be single- or two-echelon, and what kind of supply flexibility should be used (no 

flexibility, lateral transshipments only, or both lateral and emergency shipments). The models 

with finite repair capacities usually model the repair shops as single or multi-server queues with 

exponentially distributed repair times (Gross et al., 1983; Diaz and Fu, 1997; Sleptchenko et al., 

2003). Finite capacity models are suitable if a service provider has its own repair facilities as 

opposed to outsourcing repair to an external company. In a multi-echelon multi-indenture 

setting, Sleptchenko et al. (2005) introduce priority queuing models for the repair shop where 

the items are assigned to two priority groups (high or low priority). They show that appropriate 

priority assignment may lead to a significant reduction in the spare part inventory investment. 

The idea is to prioritize repair of items with high value and small repair times, so that the work-

in-process of these items is reduced with limited impact on other items. Adan et al. (2009) use a 

similar idea when they consider multiple priority classes (>2) in a single-location, single-

indenture problem. They develop a method for exact cost evaluation.  

At the operational level, various priority rules have been examined. These models assume that 

all resources are given (spare parts stock locations and levels, repair locations and capacities) 

and search for efficiency gain using (i) repair priority rules that determine in what order 

defective items are repaired, and (ii) dispatch priority rules that specify how ready-for-use items 

are handled. With respect to dispatch priority rules, a further distinction can be made in item 

allocation rules that assign incoming items to outstanding orders for that item and demand 

allocation rules that determine from which location an incoming request for a part will be 

satisfied. Regarding repair priorities, Hausman and Scudder (1982) discuss several rules in a 

single-location, three-indenture model. The best rules lead to a backorder reduction equivalent 
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to a 20% reduction in inventories. Scudder (1984) extends this model to the multiple failure case 

and finds similar results. Pyke (1990) combines repair priorities with item allocation rules in a 

simulation study and concludes that priority repair improves system performance, whereas 

allocation rules have limited impact. Caggiano et al. (2006) develop two methods to set repair 

priorities and item allocation rules in two-echelon networks within a finite planning horizon. 

They show that significant gains are feasible in a rolling horizon setting. Tiemessen and Van 

Houtum (2013) show that operational repair priorities may yield about 10% cost reduction on 

top of static repair priorities in a multi-item, single-location model. Jalil (2011) and Tiemessen et 

al. (2013) both consider demand allocation in single-item single-echelon systems with multiple 

warehouses and multiple customer classes (with each customer class having distinct penalty 

costs). Customer requests can be met by one of the warehouses or can be lost. Key issues are 

that lower priority requests should not necessarily be satisfied from the nearest warehouse (or 

from any warehouse) in order to reserve stock for premium requests.  

In conclusion, research on throughput time optimization has occurred at various planning levels. 

At a tactical level, both models with multiple shipment modes and models with finite repair 

capacity have been considered. Most research focuses on single-item single-indenture systems. 

1.7.3 Service differentiation and multiple demand classes 

The literature on multiple demand classes considers systems where the customer base can be 

segmented into different groups (i.e. demand or customer classes). We focus on models where 

segmentation results from varying service level requirements or shortage costs. At an 

operational level, service differentiation has been considered by Jalil (2011) and Tiemessen et 

al. (2013), as discussed in the previous section. In this section, we discuss literature at a tactical 

level. In that area, service differentiation is accomplished through critical level policies, a 

concept that has been introduced by Veinott (1965). We first discuss literature in which the 

optimality of the critical level policy is examined. Subsequently, we focus on the use of critical 

level policies in single-item models under three settings: under full backordering, under lost 

sales, and in settings where both backordering and lost sales are possible. Finally, we discuss 

literature where critical level policies are used in a multi-item setting.  

The critical level policy has been shown to be optimal under various settings, such as for Poisson 

demand under exponential service times (see e.g. Ha (1997b) and De Véricourt et al. (2002) for 

the backordering case and Ha (1997a) for the lost sales case), under Erlang service times (e.g. Ha 

(2000) under lost sales and Gayon et al. (2009) under backordering), and under hypo-

exponential service times with lost sales (Wieczorek et al., 2011). Other settings where 

optimality has been proven are, amongst others, assembly systems (Benjaafar et al., 2011), 

systems where both interarrival times and service times follow an Erlang distribution (ElHafisi et 

al., 2010), and production systems with capacity restrictions (Zhou et al., 2011). We refer to 
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Teunter and Klein Haneveld (2008) for a detailed overview of papers in this area. Common – and 

intuitively clear – findings are that it is never optimal to withhold stock from highest priority 

customers. Also, critical levels are non-decreasing in priority classes (i.e. if stock should be 

withheld from a class � customer, it should also be withheld from a class � customer that has 

lower penalty costs), see e.g. De Véricourt et al. (2002) and Gayon et al. (2009). In some 

settings, the optimal critical level is state-dependent, e.g. the critical level will be low – or even 

zero – if a replenishment order will arrive soon.  

Critical level policies have been applied in single-item models with lost sales (with emergency 

shipments being used for demand that cannot be met from on-hand stock). Recent 

contributions are by Dekker et al. (2002) and Kranenburg and Van Houtum (2007b). Dekker et 

al. (2002) consider a single-item model with � classes, one-for-one replenishment and static 

critical levels. The authors  present optimal solution procedures for both a cost model (where 

stock and critical level values are determined to minimize the sum of holding and penalty costs) 

and a service model (where decision variable values are determined to minimize holding costs 

subject to service level restrictions). Furthermore, the authors present a heuristic for solving the 

cost model. Kranenburg and Van Houtum (2007b) consider the same cost model as Dekker et al. 

(2002), but provide three approaches for finding optimal critical levels for given base stock 

values (with Dekker et al. (2002) providing bounds on the base stock levels themselves). Their 

approaches are much faster than the complete enumeration approach used by Dekker et al. 

(2002). Furthermore, Van Jaarsveld and Dekker (2009) prove that two of these approaches 

(algorithms 1 and 2) are in fact optimal.  

Single-item systems with critical level policies under full backordering have been considered 

both under periodic review (e.g. Möllering and Thonemann (2010) for a setting with 2 customer 

classes) and under continuous review (e.g. Nahmias and Demmy (1981), Deshpande et al. (2003) 

and Fadiloğlu and Bulut (2010) for the case with 2 customer classes, and Arslan et al. (2007) and 

Abouee-Mehrizi et al. (2012) for multiple customer classes). A complicating factor for these 

models is that positive stock levels and backorders for lower priority classes can occur 

simultaneously. As a result, authors must keep track of both outstanding orders and backorders 

for each customer class in order to analyze the system. Furthermore, a backorder clearing 

mechanism is necessary that specifies how incoming replenishment orders are handled. 

Naturally, any backorder of high priority customers should be cleared as soon as possible. The 

clearing of lower priority backorders, in contrast, might need to be delayed in favor of 

increasing inventory in anticipation of future high priority arrivals. A clearing mechanism that is 

optimal in certain cases (Ha, 1997b) is priority clearing, where non-premium backorders are only 

cleared once all premium backorders have been cleared and the inventory level is at least the 

critical level (see e.g. Fadiloğlu and Bulut (2010)). As this mechanism may result in intractable 

models (and can lead to very high waiting times for non-premium customers), alternative 



1.7. Literature 

18 

 

mechanisms have been considered as well (see e.g. Deshpande et al. (2003), Arslan et al. (2007) 

and Abouee-Mehrizi et al. (2012)). 

A few contributions consider single-item models with both backordering and lost sales, both in a 

continuous-review setting (e.g. Enders et al. (2012), Benjaafar et al. (2010), Van Wijk (2012)) and 

a periodic review setting (e.g. Tang et al. (2007), Zhou and Zhao (2010a, 2010b)), see Van Wijk 

(2012) for details. In certain papers, the shipment option used depends on the customer class 

(e.g. Enders et al. (2012), where premium demand is lost, while non-premium demand is 

backordered), whereas other papers allow the choice of backordering versus lost sales to only 

depend on the system state (as in Benjaafar et al. (2010)). 

We have only found two papers that consider critical level policies in a multi-item setting. One 

paper is by Kranenburg and Van Houtum (2008), who minimize holding and shipment costs in a 

multi-item multi-class model with class-dependent waiting time restrictions. Unmet demand is 

satisfied through emergency shipments. The authors use a solution approach based on 

decomposition and column generation, combined with greedy heuristics. Pourakbar and Dekker 

(2012) consider differentiation in an end-of-life problem, when production of certain parts is 

discontinued and the service provider places a final order quantity of parts for the remaining 

service life cycle. The authors mainly focus on a single-item setting and show that the optimal 

policy consists of time-dependent rationing and contract extension thresholds, where the 

former thresholds indicate whether demands from a customer class should be met or lost, while 

the latter thresholds indicate whether a contract type should be discontinued from some point 

in time onwards. They subsequently extend these findings to a multi-item setting.  

To our knowledge, the critical level policy is the only tool that has been considered so far for 

service differentiation in spare parts supply at a tactical level. Most research in this area focuses 

on single item models.  

1.7.4 Lateral transshipments and emergency shipments 

The literature stream on lateral transshipments and emergency shipments consists both of 

papers in which only one kind of flexibility option is used and papers in which the options are 

jointly used. We first discuss literature where only emergency shipments are considered. 

Subsequently, we discuss literature where lateral transshipments are the only flexibility option. 

Finally, we focus on papers where both options are jointly used.  

With respect to literature that only considers emergency shipments, we first note the similarity 

of emergency shipments to lost sales systems, as emergency shipments often occur through 

different channels than regular replenishments and therefore can be considered lost sales for 

the regular channel. Lost sales literature dates back to Karush (1957), who considers a single 

location with Poisson arrivals, one-for-one replenishments and mutually independent 
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replenishment times. Karush shows that the probability of being out of stock is strictly convex as 

a function of the base stock level. Further contributions are, amongst others, by Feeney and 

Sherbrooke (1966) and Smith (1977). Literature on emergency shipments dates back to 

Muckstadt and Thomas (1980), who extend the METRIC model to include emergency shipments. 

Hausman and Erkip (1994), in turn, extend the work of Muckstadt and Thomas by presenting an 

improved single-echelon model to approximate their multi-echelon system. Moinzadeh and 

Schmidt (1991) consider a single location system where the shipment mode (normal or 

emergency) depends on the amount of on-hand stock and the lead time of outstanding orders. 

Their work is extended by Aggarwal and Moinzadeh (1994), who consider a two-echelon 

system. We refer to Bijvank and Vis (2011) for details and further references.    

In literature where lateral transshipments are the sole means of supply flexibility, demand is 

backordered when no location at a particular echelon level has stock on-hand. A first 

contribution in this area is by Lee (1987), who considers a two-echelon model consisting of a 

depot and various bases. The bases are divided into pools, with lateral transshipments being 

possible among the (identical) bases in a pool. Various rules are considered for determining 

from which location to source a transshipment. The restriction of identical bases is relaxed by 

Axsäter (1990), who also introduces an improved approach for approximating service levels. 

Specifically, each base is analyzed independently with arrival rates being state-dependent (i.e. 

when the base has stock, it sees both direct requests and requests for transshipments, and 

otherwise it only sees direct requests that are backordered) and transshipment rates being 

approximated by Poisson processes. Through an iterative process, the system performance 

measures are updated until convergence occurs. Various papers use the same logic for analyzing 

their systems, also in lost sales settings (e.g. Alfredsson and Verrijdt (1999), Kukreja et al. 

(2001), Kranenburg and Van Houtum (2009), Van Wijk et al. (2012)). Further contributions under 

backordering are, amongst others, by Kukreja et al. (2001), Grahovac and Chakravarty (2001), 

and Tiacci and Saeta  (2011).  

Lateral transshipments and emergency shipments have also been considered jointly, with initial 

contributions by Dada (1992) and Alfredsson and Verrijdt (1999), who consider similar two-

echelon models. In both models, emergency shipments are only used if lateral transshipments 

are not possible, which is a common assumption. Recent contributions in this area are, amongst 

others, by Wong et al. (2007b), who consider a multi-item variant of the Alfredsson and Verrijdt 

model, Kutanoglu (2008), Kutanoglu and Mahajan (2009) and Reijnen et al. (2009), who focus on 

time-based service levels (e.g. 60% of demand needs to be met within 2 hours, with 100% of 

demand met within one day), Kranenburg and Van Houtum (2009), who consider a model in 

which only a subset of all warehouses can act as a source of transshipments (so-called main 

warehouses), and Van Wijk et al. (2012), who consider a model in which transshipment requests 

at any warehouse are only satisfied if the stock level at that warehouse is above a certain 
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threshold (a so-called hold back level, which is similar to a critical level). Literature reviews on 

lateral transshipments, both under backordering and under emergency shipments, are given by 

Wong et al. (2006) and Paterson et al. (2011). 

Clearly, both lateral and emergency shipments have been considered extensively. Still, most 

papers focus on system evaluation in a single-item setting. Furthermore, neither lateral 

transshipments nor emergency shipments have been considered as service differentiation tools 

before at a tactical level.   

1.7.5 Service engineers 

The literature on service engineers primarily consists of field service models, where service 

engineers travel to customers’ sites for diagnosis and repair. We discuss literature at the tactical 

level, as our focus lies on setting staffing levels (i.e., on determining the number of engineers 

needed to meet all service level targets). First, we discuss papers at a purely tactical level. We 

do so in two parts: we first discuss papers that consider a single customer class and then the 

papers that consider multiple customer classes. Subsequently, we discuss papers that consider 

decisions at both a tactical and an operational level. 

At a purely tactical level, most papers focus on analyzing the field service network for a given 

staffing level (i.e. a given number of service engineers). Many papers considering a single 

customer class use queuing models for analysis. Waller (1994) considers a system where each 

engineer services a separate set of customers. He incorporates spare parts availability in the 

model through a positive probability of not having the needed part available (which necessitates 

a second visit from the engineer). Hill et al. (1992) and Tang et al. (2008) consider a system 

where a set of engineers service various customers. Both papers use state-dependent �|�|� 

models for the analysis. Furthermore, the papers focus on determining the required number of 

engineers subject to service restrictions, such as response time targets (Hill et al.) and the 

fraction of customers serviced within a predetermined time window (Tang et al.). System 

analysis has also been done using simulation (e.g. Dear and Sherif (2000) and Watson et al. 

(1998)), with  Watson et al. (1998) combining simulation with regression analysis to investigate 

the relationship between staffing levels, dispatching rules and staff utilization. All papers 

discussed so far assume that each engineer can repair any system. In practice, however, certain 

skills are necessary to repair a system, which may depend on the machine type. The skill levels 

of service engineers then influence what types of repairs they are able to perform, and hence 

how many engineers are required. Contributions in this area are, amongst others, by Agnihothri 

et al. (2003) and Colen and Lambrecht (2012), who both consider models with two job types. 

Both papers use simulation to determine whether service engineers should be dedicated (i.e. 

specialized in one type of job) or flexible (specialized in both job types). 
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Of the papers considering multiple customer classes, we again find that analysis generally occurs 

using queuing models, with most papers considering exponential service times. Papadopoulos 

(1996) extends the model by Waller (1994) to a multi-class setting where customers may be 

serviced by more than one engineer. The author analyses the resulting system as a network of 

queues using a priority mean value analysis approach (with high priority customers being served 

before lower priority customers). For an �/�/� queue with various customer classes and a 

preemptive resume priority discipline, Buzen and Bondi (1983) give exact expressions for the 

mean waiting time per class when service rates are identical for all classes, with approximate 

expressions being given for the case that the service rates differ among classes. For the setting 

with non-preemptive priorities and identical service rates over all classes, Kella and Yechiali 

(1985) give exact expressions for the Laplace Stieltjes transform (LST) of the waiting time per 

class. Further contributions considering exponential service times are, amongst others, Peköz 

(2002) who considers the policy of delaying service to lower priority customers even if an 

engineer is available to reserve capacity for meeting high priority demand, Sleptchenko et al. 

(2005) who consider two classes that each consist of multiple customer types, each with distinct 

arrival and service rates, and Zeltyn et al. (2009) who consider a setting where a subset of the 

highest priority customer classes has preemptive priority over the remaining classes. We have 

also found papers that consider non-exponential service times. Altinkemer et al. (1998) derive 

approximations for the mean waiting times per class in an �/�/� non-preemptive priority 

queue. Harchol-Balter et al. (2005) provide approximate results for the distribution of the 

number of customers per class in the system (and correspondingly of the time spent in the 

system) when service times have a phase-type distribution and a preemptive resume priority 

discipline is used. Wagner (1997) considers a non-preemptive priority model with a generalized 

Markovian arrival process and a phase-type service time distribution that is identical per class. 

The author mainly focuses on estimating the mean waiting times per class. Williams (1980) gives 

approximations for the LST and first two moments of the waiting time per class for a two-class 

system with non-preemptive priorities and a generalized service time distribution that is 

identical for both classes. Jagerman and Melamed (2003) provide similar results for the setting 

with � customer classes and a service time distribution that may differ per class. The authors 

subsequently use these results to determine the minimal number of servers needed to meet all 

class-specific service level targets, where the type of service level may vary per customer class.  

At a tactical and operational level, we find the paper by Gurvich et al. (2008), who consider 

employee staffing and scheduling in a call center environment (where travel times thus are not 

considered). Customers belonging to various customer classes, each with a distinct service level 

requirement, are served by one of various employees. The authors argue that staffing and 

scheduling can be decomposed into separate problems: the necessary number of employees 

(i.e. the staffing level) only depends on the total customer arrival rate and the service level 

requirement of the lowest priority class. As a result, the system can thus be analyzed as a single-
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class system with one service level requirement when determining the staffing level. 

Furthermore, customers are assigned to employees through a threshold priority schedule, 

where a customer of a particular class is only served once all customers with higher priority 

have been served and the number of unoccupied employees exceeds a class-specific threshold 

value (similar to a critical level policy in spare parts supply). Other papers, such as Harrison and 

Zeevi (2005) and Bassamboo (2006) also consider staffing and scheduling in a call-center 

environment with multiple classes, but they distinguish customer classes based on the type of 

activity that must be performed (with each pool of servers being able to handle one or more 

types of activities). In both papers, the decision maker must decide how to handle an incoming 

customer and what action to take if a server becomes available when customers are waiting. 

The objective is to minimize the costs of staffing and of customers abandoning the system 

before service.  

Overall, most literature focuses on system analysis given a certain staffing level, with analysis 

generally occurring using queuing models. We have found both papers that consider a single 

customer class and those that consider multiple classes under various priority mechanisms. 

Most papers consider Poisson arrivals and exponential service time distributions.  

1.8 Contribution and detailed research objectives 

1.8.1 Contribution 

Overall, our main contribution points are: 

• We consider new (combinations of) control options for applying service differentiation 

in the fulfillment process. The literature on service differentiation primarily focuses on 

the use of critical level policies in spare parts supply. Such policies are difficult to 

implement in practice, as explained in Section 1.5. Literature on differentiation in areas 

besides spare parts supply is limited, as shown when discussing literature on service 

engineers in Section 1.7.5. In addition to considering control options separately, we also 

investigate the added value of combining various control options.  

• We focus on realistic models for service contract fulfillment. We mainly consider spare 

parts supply models with various items. In literature on customer differentiation, in 

contrast, single-item settings are predominantly considered, with the focus on multi-

item settings being limited. 

Detailed contribution points per research area are as follows: 

• We extend the VARI-METRIC model to a setting where throughput times may be 

reduced for certain items. We opt not to model the repair shops by finite capacity 

(multi-server) queues, because repair capacities often are not fixed or may be fuzzy 
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(repair shops may have other tasks than repair), with flexibility options possibly being 

available such as working overtime or temporarily hiring personnel. In our model, we 

may select different options for repair and transportation lead times at different prices, 

without explicitly modeling capacity. We encountered this situation at Thales 

Netherlands, which offers both a normal repair and a fast repair option to its customers 

at different prices. Emergency shipment options also exist that can be applied for certain 

combinations of items and locations against extra costs. 

• We consider models where lateral transshipments and emergency shipments are only 

used for a subset of all items and customers. Lateral transshipments and emergency 

shipments are generally faster than waiting for items to arrive through regular supply. 

However, such shipment modes are also more expensive than regular shipments. 

Therefore, their use will often be limited to high priority customers (who have paid a 

higher contract price). The types of items will also influence the use of these shipment 

modes, with lateral and emergency shipments being most beneficial when used for 

expensive slow moving items. For inexpensive fast movers, in contrast, such shipment 

modes will be prohibitively expensive. So far, no models have been considered where 

shipment mode differentiation is possible on both an item and a customer level. 

• We consider a model where dedicated customer stocks can be kept, both under full 

backordering and under lost sales. The added value of keeping dedicated stocks has not 

been investigated in literature before. 

• We develop a new method for analyzing two-echelon models with lost sales. The 

option of keeping dedicated stocks in addition to stock at a central location results in an 

additional echelon level in the supply chain. Under lost sales, no appropriate multi-

echelon models yet exist for analyzing such a system.  

• We develop a model for estimating response time distributions when priority 

mechanisms are used to assign service engineers to customers. Using these response 

time distributions, we can both determine the required number of service engineers in a 

service region for a given set of service level agreements and, conversely, determine 

what service levels are achievable given the current number of engineers. The situation 

at Océ Technologies serves as a basis for model development.  

1.8.2 Detailed research objectives 

Our main research objective translates into 7 detailed objectives. Research objective 1 pertains 

to differentiation in spare parts supply on an item level through selective throughput time 

reduction. 

1. To determine whether and when throughput time reduction can lead to large cost 

savings in general multi-echelon multi-indenture spare parts networks (chapter 2).  
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To meet this research objective, we require (i) a procedure to accurately determine the system’s 

performance measures under this control option and (ii) a procedure to set decision variable 

values (i.e. the stock level and throughput time values in the system) such that the total system 

costs are minimized subject to service level restrictions. To estimate the added value of 

throughput time reduction, we compare it to a benchmark model where the system stock levels 

are the only decision variables (i.e. throughput times are fixed). 

Research objectives 2 to 6 pertain to control options for applying differentiation in spare parts 

supply on both an item level and a customer level.  

2. To determine whether and when the selective use of emergency shipments is an effective 

control option for applying service level differentiation in spare parts supply (chapter 3). 

 

3. To determine whether and when the selective use of lateral transshipments is effective 

for applying service level differentiation in spare parts supply (chapter 4).  

 

4. To find an accurate and fast approach for analyzing a two-echelon model with lost sales 

(chapter 5). 

 

5. To determine whether and when the use of dedicated customer stocks is an effective 

control option for applying service level differentiation in spare parts supply (chapter 6). 

 

6. To investigate the added value of using multiple control options simultaneously for 

differentiation in spare parts supply (chapters 3, 4 and 6). 

The sub-questions (i) and (ii) for research question 1 also apply to research questions 2, 3, 5 and 

6. As indicated in Section 1.8.1, we have developed a new method for analyzing a two-echelon 

model with lost sales. This model, which we require for analyzing a system under dedicated 

stocks, is discussed separately in chapter 5. Notice that we also look at the added value of using 

multiple control options simultaneously for differentiation (research question 6). To investigate 

the added value of the (combinations of) control options, we compare them to two benchmark 

models, namely one-size-fits-all policies where no differentiation is used, and critical level 

policies. 

Finally, we also investigate the use of priority mechanisms for applying differentiation in 

assigning service engineers to customers.  

7. To determine the impact on service level performance of using priority mechanisms for 

assigning service engineers to customers (chapter 7).  
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To meet this objective, we must first be able to determine system performance per customer 

class when priority mechanisms are used for assigning engineers to customers. Subsequently, 

we use these performance measures to verify whether all service level agreements have been 

met. As we will show, it is often not sufficient to only determine the mean response time per 

customer class, as service levels can also pertain to the overall response time distribution.  

In the remainder of the dissertation, we will show that there is indeed significant added value to 

optimizing throughput times in addition to system stock levels, both when throughput times are 

only used for differentiation on an item level (research objective 1) and when they are used for 

differentiation on both an item level and a customer class level (research objectives 2 and 3). 

Furthermore, we show that (a combination of) control options for service differentiation 

(research objectives 2 to 6) are nearly as effective as critical level policies, even outperforming 

critical level policies under specific circumstances. Finally, we show that we can accurately 

estimate the distribution of service engineer response times when priority mechanisms are used 

for assigning service engineers to customers (research objective 7).  

1.9 Techniques 

To determine the added value of the control options, we must be able to evaluate performance 

measures – such as waiting times for spare parts and service engineers – when an option is 

used. Furthermore, we require techniques for system optimization under each control option 

(e.g. finding stock level values that minimize system costs under specific service level 

restrictions). We now elaborate on the mathematical techniques that we use for these 

purposes.   

1.9.1 Techniques for evaluating system performance  

In the research discussed in this dissertation, we commonly make two assumptions, namely (i) 

that failures occur according to Poisson processes and (ii) that replenishment/response times 

are exponentially distributed. As previously discussed, both assumptions are very common in 

after-sales service models. We also find the first assumption often to be valid in practice. The 

second assumption tends to be less valid in practice (e.g. part replenishment times tend to be 

close to deterministic). Nevertheless, this assumption is often not restrictive in spare parts 

models: for instance, earlier spare parts research has shown that system performance tends to 

be insensitive to the lead time distribution, particularly in lost sales models (see e.g. Alfredsson 

and Verrijdt (1999)).  

Under these assumptions, system evaluation can occur through the use of continuous-time 

Markov chains. Queuing models, in particular, are frequently used for performance evaluation. 

For our purposes, system failures can be modeled as arrivals in a queuing system, with the 

number of available service engineers or the number of outstanding orders at a warehouse 
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representing the servers (as done in Williams (1980) and Kranenburg and Van Houtum (2008) 

amongst others). As we assume that the arrivals to the queuing system occur according to a 

Poisson process, the PASTA property (i.e. Poisson Arrivals See Time Averages) allows us to 

obtain performance measures such as mean waiting times from the steady-state distribution of, 

for instance, the inventory levels at various warehouses. In spare parts optimization models, 

frequently used queuing models are the �|�|�|� queue for lost sales models (i.e. the Erlang loss 

system) and the �|�|∞ queue for backordering models, see e.g. Karush (1957) and Graves 

(1985). Both queuing models are insensitive to the service time distribution. 

We note that an exact evaluation approach will not always be beneficial for the models we 

consider: for certain models, exact analysis models will require a lot of computation time, in 

particular in multi-item settings. Therefore, we also consider approximations that lead to fast 

and accurate results. Such approximations are quite common, such as the METRIC 

approximation (Sherbrooke, 2004) or the two-moment approximation (Graves, 1985) to 

approximate the distribution of the number of outstanding orders at warehouses. 

Approximations also occur in settings where an exact evaluation approach requires large multi-

dimensional Markov chains, such as in lateral transshipment models with various warehouses 

(see Alfredsson and Verrijdt (1999) for an example). For such models, an iterative approach is 

used where each warehouse is analyzed separately given the rate at which transshipment 

requests arrive at that warehouse. This transshipment rate is updated over a number of 

iterations until convergence occurs (Axsäter, 1990).    

1.9.2 Optimization techniques 

For the control options with respect to spare parts supply (i.e. research objectives 1 through 6), 

we require techniques for finding optimal decision variable values. The aim is to minimize 

system operating costs under class-specific restrictions on the aggregate mean waiting time 

over multiple items. As mentioned in Section 1.4.2, a system approach is required to ensure a 

certain availability level. As a result, aggregate waiting time restrictions apply (i.e. we are 

interested in the waiting time over all items instead of the waiting time per item).  

The optimization problems we thus consider are multi-item problems with aggregate waiting 

time restrictions that are non-linear in the decision variables. Furthermore, the decision 

variables themselves (such as stock levels) are integer valued. Kranenburg (2006) considers 

similar optimization problems and notes that those problems are in fact complex knapsack 

problems for which an optimal polynomial time algorithm most likely does not exist. As our 

models can be viewed similarly, we expect that no polynomial time solution algorithms exist for 

our models either. As a result, optimal solution methods will likely be too time-consuming for 

problems of realistic size (i.e. with various items and/or stock locations).  
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Therefore, our focus is on heuristic methods, with the objective of finding near-optimal 

solutions within acceptable time. We consider three types of methods, i.e. greedy heuristics, 

local search, and Dantzig-Wolfe decomposition. As stated in Section 1.4.2, greedy heuristics 

iteratively select the option that results in the largest contribution according to some criterion 

(e.g. largest waiting time decrease per dollar additional investment) until some stopping 

criterion is satisfied. The approach is often considered, as it is simple and easy to implement. 

Furthermore, under strict convexity properties it may even give optimal solutions. However, its 

implementation is not always straightforward, especially in settings with multiple customer 

classes. The key issue then is how to value waiting time reductions for different customer 

classes. Specifically, it might be more beneficial to improve the service levels of high priority 

customers instead of those of lower priority customers, making it more difficult to determine 

which solution gives the largest contribution. Nevertheless, it does provide a feasible solution to 

the problem, which in turn can serve as input for alternative optimization techniques. 

The second technique we consider is local search. Local search techniques start from an existing 

solution (such as the one given by a greedy heuristic) and iteratively try to find better 

alternatives. In each iteration, a set of solutions is constructed that closely resemble the current 

solution being considered (the so-called neighborhood of the current solution). In spare parts 

optimization models, a neighborhood may consist of solutions that keep one unit of additional 

stock for a specific item compared to the current solution. The best alternative is selected 

according to some criterion. This process is repeated until no further improvement occurs. We 

refer to Aarts and Lenstra (2003) for an overview.  

Finally, we also consider a technique similar to Dantzig-Wolfe decomposition (Dantzig and Wolfe 

(1960), see also Gilmore and Gomory (1961)) which has often been applied to multi-item spare 

parts optimization problems with similar characteristics (e.g. Kranenburg and Van Houtum 

(2008), and Wong et al. (2007a)), leading to good results. With the technique, the original 

nonlinear problem is reformulated to a linear problem (a so-called Master problem), which can 

subsequently be solved using (integer) linear optimization techniques. Reformulation is 

accomplished by constructing a set of possible solutions for each item. In this dissertation, we 

refer to these possible solutions as item policies. In a standard spare parts problem, an item 

policy would indicate the amount of stock kept at the various locations in the system. The 

reformulated problem then becomes to select for each item exactly one policy from the set, 

such that costs are minimized, while the original restrictions are still met.   

As an example, we present a simple single-location two-item problem (adapted from 

Kranenburg (2006)). For item � (� = 1,2), �  denotes the item demand rate. Furthermore, �  
denotes the stock level of item �, with �! "� # and $% "� # denoting the related item costs and 

mean waiting time respectively. The objective is to determine stock levels such that the total 
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costs are minimized, while the aggregate waiting time may not exceed a threshold value %&'(, 

i.e. 

")1# min-.,-/ �!0"�0# + �!1"�1#  

s.t. 
&.&.2&/ $%0"�0# + &/&.2&/ $%1"�1# ≤ %&'(  

 �0, �1 ∈ ℕ6  

  

This problem can be reformulated as follows: let 
 7 denote an item policy for item � (� = 1,2), 

with 8 denoting the policy index. For each policy 
 7, �9:;  indicates the corresponding base stock 

level and the binary variable <9:; denotes whether 
 7 is selected for item � or not (<9:;  then 

equals 1 or 0 respectively). Let �  denote the set of item policies for item � (so 
 7 ∈ � , with 8 = 1,2, … , |� |). We then obtain the following reformulated problem:  

")2# min(>:;,:?.,/,;?.,…,@A:@ ∑ �!0C�9.;D<9.;|E.|7F0 + ∑ �!1C�9/;D<9/;|E/|7F0     

s.t. ∑ &.&.2&/ $%0C�9.;D<9.;|E.|7F0 + ∑ &/&.2&/ $%1C�9/;D<9/;|E/|7F0 ≤ %&'(   ")2.1# 

 ∑ <9:; =|E:|7F0 1  � = 1,2  ")2.2# 
 <9:; ∈ H0,1J  

� = 1,2, 8 =1, … , |� | 
    

In principle, �  can consist of an infinite number of item policies. Still, a finite set of policies 

exists for each item � (� = 1,2) such that ")2# and ")1# are equivalent in the sense that both 

problems have the same optimal solution. Furthermore, if the integrality restriction on <9:;  is 

relaxed in ")2#, the solution to the resulting LP-relaxation constitutes a lower bound on the 

system costs. As a result, the quality of any solution to the original integer problem can be 

expressed in terms of a gap to this lower bound. Note that the solution to the LP-relaxation can 

also serve as a starting point for finding a near-optimal integer solution. A further benefit of this 

decomposition is that the system can be analyzed for each item policy separately, resulting in a 

distinction between system analysis and optimization. The analysis approach for an item policy 

does not matter, provided that the related costs and waiting times can somehow be obtained 

for optimization purposes. Note that an item policy can consist more decision variables than the 

system stock levels alone: any type of decision variable can be included in the item policy, such 

as the critical level per location that denotes the amount of stock reserved for high priority 

customers, or the shipment strategy used (e.g., backordering or emergency shipments) when a 

location is out of stock.   

The main challenge in using decomposition is the selection of item policies for each item. As we 

just mentioned, the number of decision variables included in an item policy can be vast, 
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resulting in an extensive set of policies to choose from, particularly for problems of realistic size. 

Then, it will not be viable to consider all policies, since computation times for solving the integer 

problem quickly increase as the number of policies increases. Furthermore, the system must be 

evaluated under each considered item policy to obtain the related performance measures. Such 

an evaluation also takes time, especially for complex systems, such as those where lateral 

transshipments are allowed among warehouses. We first focus on finding the set of policies 

such that the optimal solution to the LP-relaxation of ")2# is the same as that of ")1#. 

Subsequently, we describe how to find a near-optimal integer solution to ")1#. 

To find the policy set resulting in an optimal solution to the LP-relaxation of ")2# and ")1#, we 

use column generation, which is a technique that is often used to solve problems with a large 

number of item policies (see e.g., Gilmore and Gomory (1961), Hans (2001), Lübbecke and 

Desrosiers (2005)). The idea behind column generation is as follows: (1) first, an initial set of 

policies is constructed for each item which leads to a feasible solution to the LP-relaxation of the 

reformulated problem when solved with the simplex method. Subsequently, (2) we iteratively 

add policies to the policy set that have not yet been considered, but could improve the solution 

value if added. We give further details on policy selection later on. We proceed to add such 

policies to the policy set until we can show that no further policies exist that would improve the 

solution value further.  

The key to finding interesting policies to add, and to ensuring that we have included sufficient 

item policies in � , lies in duality theory. Below, let C)L7 &D denote a linear optimization 

problem with |M| variables and |N| constraints. Furthermore, let ")OP'Q# denote the dual variant 

of C)L7 &D.  

C)L7 &D min ∑ �RSRR∈TU. �. ∑ VRWSR ≥ 
WR∈T Y ∈ NSR ≥ 0 � ∈ M   

")OP'Q# max ∑ \W
WW∈]U. �. ∑ \W�WRW∈] ≤ �R � ∈ M\W ≥ 0 Y ∈ N  

Let ^∗ = `S0∗ , S1∗ , … a denote a solution to C)L7 &D. Duality theory then tells us that ^∗ is only 

optimal for C)L7 &D if the corresponding solution to ")OP'Q# is feasible, see e.g., Winston (2003). 

Specifically, this means that �R − ∑ \W�WRW∈] ≥ 0 for all variables � ∈ M. Conversely, we can thus 

prove that we have obtained the optimal solution to C)L7 &D by showing that no variable � 

exists for which �R − ∑ \W�WRW∈] < 0.  

Note that the expression �R − ∑ \W�WRW∈]  in fact denotes the reduced costs related to a variable SR . Hence, step (2) of column generation focuses on finding at least 1 variable that has negative 

reduced costs (in which case the solution quality can be improved by including that variable in 

the problem), or proving that no such policy exists. To compute the reduced costs for any 

variable, we require values for the dual variables \W (Y ∈ N). Note that the value of \W 
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corresponds to the shadow price for constraint Y when we solve C)L7 &D. Given that the 

shadow price denotes the amount by which the solution value increases when the RHS of the 

constraint increases by 1 unit, the value for \W will at least be zero in the previous example, as 

each increase of 
W  results in a smaller solution space and thus possibly higher costs. Note that 

the shadow price will be exactly zero if the restriction is nonbinding.  

Applying these general results to problem ")2#, we find the following expression for the 

reduced costs: 

�$�"
 7# = �! C�9:;D − \0� �0 + �1 $% C�9:;D − \ 20 � = 1,2, 
where \0 ≤ 0 denotes the shadow price related to constraint ")2.1# and \1,c ≥ 0 denotes the 

shadow prices related to constraints ")2.2#. Now, \0 is non-positive, since an increase of %&'( 

can only improve the solution quality (corresponding to the lower solution value). Conversely, \1 and \c are nonnegative: for those constraints, an increase of the RHS values implies that 

more than 1 policy must be selected per item. Such an adjustment cannot lead to lower costs. 

Note that �$�"
 7# does not depend on the costs and waiting times for items � ≠ �. Hence, we 

can apply column generation for each item separately. As a result, the overall problem can be 

decomposed into single-item problems.  

Overall, we use the following column generation procedure for the LP relaxation considered in 

this dissertation:  

1. Start with an initial set of item policies that results in a feasible solution to our 

optimization problem.  

2. Using the current set of item policies, solve the restricted LP relaxation of the 

optimization problem. Derive the shadow price values for each constraint.  

3. Use the shadow price values to find per item an item policy that has not been included in 

the restricted LP problem yet and that has negative (and possibly minimum) reduced 

costs. If such a policy is found, it is added to the policy set.  

4. If we can prove that no policy with negative reduced costs exists for any item, we have 

found the optimal solution to the LP relaxation. Otherwise, we proceed to step 2.  

With the above column generation procedure, we are able to find an optimal solution to the LP-

relaxation of problem ")1#. Note that this solution constitutes a lower bound to the original 

integer problem. In general, this LP-relaxation solution will not be integer: a linear combination 

of policies might be selected for a subset of items. We therefore also require approaches to 

obtain a near-optimal integer solution. We consider two such approaches in this dissertation, 

both of which use the LP-relaxation solution – and the constructed item policies – as a starting 

point. The first approach uses the LP-relaxation solution to obtain an initial solution for the local 
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search procedure described earlier in this section. For instance, the LP-relaxation solution can 

first be rounded to an infeasible solution with low costs, with local search used to obtain a 

feasible integer solution at minimal additional costs. The second approach starts with the item 

policies constructed during column generation and uses a solver such as CPLEX to solve the 

integer variant of problem ")2#. As computation times can be extensive under integer 

optimization, we apply various strategies to keep computation times reasonable, such as 

removing poor item policies from the problem before optimization, or limiting the time for the 

solver to optimize the problem.  

1.10 Outline 

The outline of the dissertation closely follows the research objectives stated in Section 1.8.2. In 

Chapter 2 (research objective 1), we consider differentiation at an item level by investigating the 

cost savings that are possible by selectively applying throughput time reduction in multi-echelon 

multi-indenture spare parts networks. In Chapters 3 through 6, we consider differentiation at 

both an item and a customer level by considering various (combinations of) control options for 

applying differentiation in spare parts supply. In Chapter 3 (research objective 2), we focus on 

the selective use of emergency shipments in a setting with a single warehouse. In Chapter 4 

(research objective 3), we subsequently extend this selective emergency shipment model to a 

multi-warehouse setting where lateral transshipments may be used selectively to satisfy 

premium customer requests. In Chapter 5 (research objective 4), we present an approach for 

analyzing a two-echelon model with emergency shipments. The analysis of this model serves as 

a building block in the multi-item optimization model considered in Chapter 6, where we allow 

dedicated customer stocks to be kept for meeting differentiated service requirements (research 

objective 5). Note that research objective 6 – on investigating the added value of combining 

various control options – is discussed in Chapters 3, 4 and 6. After treating various control 

options pertaining to spare parts supply, we consider differentiation when assigning service 

engineers to customers in Chapter 7 (research objective 7). The final chapter in this dissertation 

is Chapter 8, where we draw our main conclusions and discuss possibilities for further research. 

Table 1.1 summarizes the control option(s) considered in each chapter and the levels at which 

differentiation occurs. In chapters that pertain to multiple control options, the primary option 

discussed in that chapter is marked by an asterisk. We do not include Chapter 5  in the overview 

as it serves as a building block for the model in Chapter 6.    
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Chapter Control options Differentiation at 

an item level 

Differentiation at a 

customer level 

2 Throughput time reduction options x  

3 Selective emergency shipments *, 

critical level policies 

x X 

4 Selective emergency shipments, 
selective lateral transshipments *, 

critical level policies 

x X 

6 Dedicated stocks *,  

critical level policies 

x X 

7 Priority assignment mechanisms  X 

Table 1.1 Overview per chapter of the control options considered and the levels at which differentiation occurs. 
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Chapter 2  

Throughput time reduction1 

2.1 Introduction 

In this chapter, we focus on differentiation at an item level in spare parts supply. Specifically, we 

consider a model where item throughput times for repair and transportation can be reduced at 

additional costs. As a result, these throughput times also become decision variables in an 

optimization procedure. Our research is based on a setting we encountered at Thales 

Netherlands, a supplier of naval radar and combat management systems. For system upkeep 

during the life cycle, Thales offers service contracts to its customers that contain quantified 

service levels, such as a maximum response time in case of a failure. To meet these service 

levels, Thales places initial inventory in the network, with inventory levels optimized using a tool 

based on VARI-METRIC (Sherbrooke, 2004). If there is evidence during contract execution that 

the actual service levels are below target (e.g. in terms of downtime waiting for spare parts), 

Thales has options for intervening at a tactical level, amongst others by (i) buying additional 

spare parts, (ii) reducing repair shop throughput times, and (iii) reducing transportation times of 

spare parts. We focus on throughput time (TPT) reduction (of repair and transportation) as an 

alternative to an investment in spare parts. Earlier literature (Sleptchenko et al., 2005; Adan et 

al., 2009) has shown that influencing repair TPT for specific items may have a large impact on 

the total costs. 

Inspired by the Thales case, we aim for a realistic model, i.e. a multi-item, multi-indenture, 

multi-echelon setting. This is in contrast to single-item models found in the literature that can 

only be used as a building block. As mentioned in the introduction (Section 1.4.2), the product 

indenture levels indicate the levels at which repair can take place, with modules at the highest 

indenture level denoted by Line Replaceable Units (LRUs), which in turn can be repaired by 

replacing subcomponents (so-called Shop Replaceable Units (SRUs)) or parts. Figure 2.1 depicts 

a multi-indenture structure for the setting at Thales. In the remainder of this chapter, we will 

use the phrases parent and child to refer to the relations in the multi-indenture structure: In 

Figure 2.1, the supply cabinet is the parent of the power supply, and the power supply and air 

conditioning assembly are children of the supply cabinet. Furthermore, we use the term item for 

                                                      
1
 This chapter is based on the paper “Inventory reduction in spare part networks by selective throughput time 

reduction” by M.C. van der Heijden, E.M. Alvarez, and J.M.J. Schutten, International Journal of Production 

Economics, 143(2), pp. 509–517. 
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components at any level in the multi-indenture structure (LRUs, SRUs, parts). Figure 2.2 denotes 

the multi-echelon structure for Thales. Spare parts may be stocked on board of a naval ship, at 

the shore organization (close to a harbor), or at Thales Netherlands. We will use the common 

term base for a site where one or more systems are operational and the phrases supplier and 

customer for the relations in the multi-echelon structure. In Figure 2.2, Thales is the supplier of 

the shore site, and the shore site is a customer of Thales. Ready-for-use items are moved from 

the upstream part of the supply chain (Thales) to the downstream part (ships). 

 

Figure 2.1 A multi-indenture structure.   Figure 2.2 A multi-echelon structure. 

Our model allows us to both set spare parts inventory levels and select different options for 

repair and transportation lead times at different prices, without explicitly modeling capacity. We 

encountered this situation at Thales, which offers both a normal repair and a fast repair option 

at different prices to its customers that do not have service contracts. The same flexibility could 

be used to optimize the performance for customers having service contracts. This also holds for 

emergency transportation that Thales may apply for certain combinations of items and locations 

against additional costs. To gain insight in the impact of TPT reductions, we first develop 

expressions for the marginal backorder reduction of LRUs at operating sites as a function of the 

marginal reduction in TPT of each repair and transport in the network. We use these expected 

number of backorders as a criterion, because their minimization is approximately equivalent to 

maximizing operational availability (Sherbrooke, 2004). Under the approximation that the 

pipelines are Poisson distributed, we only need the fill rates of all items in the multi-indenture 

structure at all locations in the multi-echelon network to compute the marginal backorder 

reduction as a function of the marginal reduction in repair and transport TPTs. Combining these 

marginal values with a certain discrete step size for the TPT reductions, we develop a heuristic 

optimization method to balance the investment in TPT reductions to investment in extra spares. 

In summary, our contributions to the literature are the following: 

1. We consider a simple but practical model for the trade-off between spare part stocks and 

TPT reduction in repair and transportation, based on pricing of TPT reduction. This model is 
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suitable for multi-item, multi-echelon, multi-indenture networks as we encountered at 

Thales Netherlands. 

2. We use estimates for the marginal impact of TPT reductions to develop an efficient heuristic 

method for the simultaneous optimization of spare part inventories and repair and 

transportation TPTs. We show that significant cost reductions are feasible. 

3. We show how the savings depend on the type of problem instance and we characterize the 

type of policies that we typically find. In particular, we observe that TPT reductions are most 

profitable downstream in the network.  

4. We apply our method in a case study at Thales Netherlands and find interesting savings 

(5.6% on the inventory investment). The restricted options for reduction of TPTs 

downstream in the network cause lower savings than in the theoretical experiments. 

We first define our model in Section 2.2. Section 2.3 shows how we estimate the impact of TPT 

reduction for given spare part stock levels. This is input for our optimization heuristic (Section 

2.4). In Section 2.5, we discuss numerical results for both the case study at Thales Netherlands 

and a large set of theoretical problem instances. We end up with conclusions in Section 2.6. 

2.2 Model, assumptions, and notation 

We consider a multi-indenture, multi-echelon spare part network. Our decision variables are 

spare part inventory levels, and repair and transportation TPTs of all items at all locations in the 

network. For each combination of item and location, we have a discrete set of TPTs, and costs 

are attached to each option.  

2.2.1 Assumptions 

We proceed from the standard assumptions of the VARI-METRIC model (Sherbrooke, 2004): 

1. Systems fail according to a stationary Poisson process. 

2. All failures are critical, i.e. they cause system downtime. 

3. Each item failure is caused by the failure of at most one subcomponent. 

4. Repair shops are modeled as �|�|∞ queues, where successive repair TPTs of the same item 

at the same location are independent and identically distributed.  

5. The flow of repair jobs of each item arriving at each location is given. This is modeled as a 

given fraction of jobs that can be repaired (the rest is forwarded for repair upstream). 

6. All items are as good as new after repair. 

7. Requests for spare parts are handled First Come, First Serve (FCFS). 

8. We use an "U − 1, U# replenishment policy for all items at all locations.  

9. Any customer stock location has one unique supplier (except the most upstream stock 

point). 
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10. Inventories are always replenished from the direct supplier in the multi-echelon structure, 

i.e. there is no lateral supply between locations at the same echelon. 

11. All transportation TPT (or: order-and-ship times) are deterministic. 

12. There is no commonality among items: the various LRUs do not have any SRU in common, 

the SRUs do not have any part in common, and so forth. 

With respect to TPTs (repair and transportation), we further assume: 

13. For each combination of item and location, we have a discrete set of TPTs, and costs are 

attached to each option. This corresponds to the practice at Thales Netherlands, where a 

limited set of options were available for both repair and transportation TPT (see the case 

description in Section 2.5.3). 

With respect to the latter assumption, we proceed from a standard repair and transportation 

lead time for each combination of item and location, and we consider options for TPT 

reductions that we may select at additional costs. Without loss of generality, the additional 

costs per repair are increasing in the repair TPT reduction, and the same applies to the 

transportation costs. If not, we ignore inferior (i.e. non-dominant) options. 

2.2.2 Notation 

We use similar notations as in Sherbrooke (2004) and distinguish input parameters, decision 

variables, auxiliary variables, and performance measures (output): 

Input: 

M = set of all locations in the network. � = set of all bases, i.e. all locations in the network where systems are installed. Note that � ⊂ M. f = set of all items. � = set of all LRUs, i.e. all first indenture items, with � ⊂ f. � R = demand rate for item � at location � (� ∈ f, � ∈ M). 8 R = fraction of demand for item � at location � that can be repaired at the same location 
(the rest is forwarded to the supplier of � for repair). 

gW  = fraction of item Y failures that is due to a failure of item �. 

ℎ  = costs per year for holding one item �, these costs may include costs of capital, storage 

and risk, including the obsolescence risk.  

� R"�# = �th option for the repair shop TPT of item � at location �, which is strictly decreasing in  �; index � = 0 gives the standard repair throughput time. 
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i R"�# = �th option for the transportation TPT of item � to location �, which is strictly decreasing 

in �; index � = 0 gives the standard transportation time. 

! Rj"�# = costs per repair if the repair shop TPT of item � at location � equals �. 

! Rk"�# = costs to move a single item � to location � from its supplier if the transportation TPT 

equals �. 

Note that the demand rates � R are input for all LRUs � ∈ � and all bases � ∈ �. We can 

recursively find the demand rates for all other combinations of item � and location � from � R = �WRgW + ∑ � Q"1 − 8 Q#Q∈lm , where Y is the parent of � and �R denotes the set of all 

customers of location �. 

Decision variables: 

U R = inventory level for item  � at location �. � R = index of repair TPT of item � at location �. 


 R = index of transportation TPT of item � to location �. 

We denote the matrices of decision variables for all items and all locations in bold face by n, o 

and p. 

Auxiliary variables: 

q R"�# = probability that the number of items � in the pipeline to location �, i.e. all items in repair 

or in resupply, equals �; we denote the corresponding mean by r R. 

Performance measures: 

$�i R"n, o, p# = Expected backorders of item � at location � under policy "n, o, p#. s R"n, o, p# = Fill rate of item � at location � under policy "n, o, p#, i.e. the fraction of demand that 

can be filled from stock on shelf without delay. 

2.2.3 Model 

As in VARI-METRIC, we aim to balance the operational availability and the costs required for 

holding spare part inventories, and, in our case, the costs of repair and transportation. As 

mentioned before, Sherbrooke (2004) uses the sum of the backorders of LRUs at bases (sites 

where systems are installed) as a proxy for the operational availability. Following this approach, 

we find the following nonlinear optimization model: 

")1# minn,o,p t t uℎ U R + � R8 R! Rj v� RC� RDw + � RC1 − 8 RD! Rk vi RC
 RDwxR∈T ∈y   
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s.t. t $�i R"n, o, p# ∈z,R∈E ≤ $�i{'7|}~  

where $�i{'7|}~  denotes a target number of LRU backorders at bases corresponding to a 

certain operational availability. We can interpret this target backorder sum as a maximum on 

the average number of systems that are down waiting for a spare part. We can set this target as $�i{'7|}~ = "1 − ����	�
�	���# ∗ f�, where f� denotes the total number of systems in the 

installed base. The expected number of backorders of item � at location � depends on the 

probability distribution of the number of items in the pipeline q R"�# and the stock level U R: 

$�i R"n, o, p# = t C� − U RD�
�F�:m20 q R"�|n, o, p# (2.1) 

where the probability of the pipeline q R"�|n, o, p# depends on the repair and transportation 

TPT of item � at location �, and the probability distribution of the number of backorders (a) of 

item � at the supplier of location �, and (b) of all children of item � at location �.  

Indirectly, the number of backorders of item � at location � depends on all stock levels of item � 

and all children downwards in the multi-indenture structure, at location � and all locations 

upstream in the supply chain. The same applies to the repair shop TPTs and transportation TPTs 

(and hence for the impact of the decision variables � R and 
 R). In METRIC, all pipeline 

distributions were originally approximated by Poisson distributions. Because this approximation 

can be quite bad, two-moment approximations for the pipelines have been used in VARI-

METRIC (Sherbrooke, 2004). This can be done using negative binominal distributions, because 

the variance-to-mean ratio of the pipelines are usually ≥1. As a more general solution, we use 

the method of Adan et al. (1995) to fit a discrete probability distribution function to the first two 

moments. Hence, we compute an approximation of all backorders using two-moment 

approximations for the pipeline distributions. VARI-METRIC only considers the stock levels and 

not the TPT reduction. For optimization, a simple greedy heuristic is typically applied. That is, 

starting at all stock levels U R = 0 ∀�, �, we add in each iteration one item of type � to the stock 

at a certain location � such that the largest ratio of reduction of the expected number of 

backorders of LRUs at bases to the additional inventory investment is incurred. In popular 

terms, this heuristic is referred to as the biggest bang for the buck approach. 

Problem ")1# is a large nonlinear integer programming problem having three times as many 

decision variables as VARI-METRIC: Next to the stock levels U R, we also have to determine the 

repair and transportation TPTs for all combinations of item � and location �. As VARI-METRIC is 

an optimization heuristic, it is reasonable to expect that ")1# cannot be solved exactly in a 

reasonable amount of time for problem instances with a realistic size. So, we focus on 

optimization heuristics. 
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2.3 Analysis of TPT reduction 

We first specify the impact of TPT reduction on the expected number of backorders of LRUs at 

the bases. To this end, we initially assume that the pipelines to each location are Poisson 

distributed (as opposed to the two-moment approximation used in VARI-METRIC). We realize 

that this approximation can lead to rather poor estimations of the marginal impact of reducing a 

particular TPT. Still, we believe that this is acceptable, since we only use the ranking of the TPTs 

to decide which TPT reductions are most attractive. Once we have selected the most attractive 

TPT reduction, we use VARI-METRIC to evaluate the exact impact of this reduction on the 

system availability, see Section 2.4. Our implicit assumption is that the ranking of TPT reductions 

will not depend on the distribution used to characterize the pipeline. Furthermore, under 

Poisson distributed pipelines we find simple expressions for the marginal impact of TPT 

reduction on the reduction of the mean backorder levels as a function of the fill rates in the 

system.  

We now find the partial derivatives of the total expected backorders of LRUs at bases to any 

mean repair TPT and order-and ship time in the following way. In finding these partial 

derivatives, we assume that the repair and transport TPTs are continuous variables. During 

optimization, however, we in fact reduce all TPTs using stepwise functions. Given that the 

pipelines have a Poisson distribution, we first note that the probability function of the pipeline q R"�|n, o, p# is given by: 

q R"�|n, o, p# = r R� ���:m�!  (2.2) 

where the mean pipeline r R depends on the decision variables "n, o, p#. From here on, we will 

use the shorthand notation ". # if a variable is a function of (some of) the decision variables "n, o, p#. Using elementary calculus, we can derive from (2.1) and (2.2) that  

�$�i R". #�r R = t r R� ���:m�!
�

�F�:m
 (2.3) 

which equals 1 − s R". #, so one minus the fill rate. For a single site model, we have that r R = � R� R, and so we find using the chain rule for differentiation: 

�$�i R". #�� R = �$�i R". #�r R
�r R�� R = v1 − s R". #w � R (2.4) 

In a two-echelon, single-indenture model with location 0 as the supplier of location �, we have 

(Sherbrooke, 2004): 

r R = � R�8 R� R + C1 − 8 RDCi R + $�i 6". #/� 6D� (2.5) 
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The chain rule gives us the derivatives to the mean repair TPT and the transportation TPT at 

location � 

�$�i R". #�� R = �$�i R". #�r R
�r R�� R = v1 − s R". #w � R8 R (2.6) 

�$�i R". #�i R = v1 − s R". #w � RC1 − 8 RD (2.7) 

and for the derivative to the mean repair TPT at location 0 we find: 

�$�i R". #�� 6 = �$�i R". #�r R
�r R�$�i 6". # �$�i 6". #�r 6

�r 6�� 6". #  = v1 − s R". #w C1 − s 6". #D� RC1 − 8 RD (2.8) 

Similarly, we find the partial derivatives of the expected LRU backorders at the bases to all mean 

repair TPTs and transportation TPT in multi-echelon, multi-indenture networks. To show how, 

we use ) R,WQ for the partial derivative of $�i R to the mean repair TPT �WQ, where  

• item Y belongs to the multi-indenture structure of item � (i.e. a child of � or a lower 

indenture item), and  

• location 	 is a location upstream of location � (i.e. the supplier of �, or even more 

upstream in the multi-echelon structure). 

Equivalently, � R,WQ denotes the partial derivative of $�i R to the transportation TPT iWQ. Then 

we can recursively compute all partial derivatives under the assumption of Poisson distributed 

pipelines. Figure 2.3 shows how we compute the partial derivatives of the expected backorders 

of LRU 0 at base � to the repair TPT of SKU � (child of LRU 0) at location 0 (supplier of �). We 

obtain this scheme by using the formulas as given in Sherbrooke (2004) (Section 5.5 – 5.7). The 

equation for ) 6, 6 (the lower right corner of the figure) has already been explained in formula 

(2.6). The equation for ) R, 6 (the upper right corner of the figure) follows from formula (2.8): 

) R, 6 = �$�i R". #�� 6 = �$�i R". #�r R
�r R�$�i 6". # �$�i 6". #�� 6". # = v1 − s R". #w � RC1 − 8 RD� 6 ) 6, 6   

 

(2.9) 

We can derive the equation for )66, 6 (the lower left corner of the figure) analogously:  

)66, 6 = �$�i66". #�� 6 = �$�i66". #�r66
�r66�$�i 6". # �$�i 6". #�� 6". #  
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Using formulas (5.15) and (5.16) in Sherbrooke2, we find: 

)66, 6 = C1 − s66". #D �66g6 � 6 ) 6, 6 
(2.10) 

Finally, we find )6R, 6 (the upper left corner of the figure) using formula (5.22) in Sherbrooke: 

)6R, 6 = �$�i6R". #�� 6 = �$�i6R". #�r6R  � �r6R�$�i66". # �$�i66". #�� 6". # + �r6R�$�i R". # �$�i R". #�� 6". # � 

 

 

Using (5.21) in Sherbrooke, this equation can be written as 

)6R, 6 = v1 − s6R". #w ��6RC1 − 86RD�66 )66, 6 + 1 ⋅ ) R, 6� (2.11) 

It is straightforward to modify this scheme for the transportation TPT. 

 

Figure 2.3 Computation scheme for the partial derivatives of LRU backorders at bases. 

We observe that we only need the fill rates to estimate the impact of TPT reduction of all items 

at all location under the assumption of Poisson distributed pipelines, which is straightforward 

and fast to compute. Our approach is exact for multi-indenture, multi-echelon networks under 

Poisson distributed pipelines. However, it is known that the true pipeline distributions may 

clearly differ from Poisson distributions. We have also observed this, particularly if we need 

probabilities from the tail of the pipeline distributions. Unfortunately, we could not find 

reasonable expressions for the partial derivatives under two-moment approximations for the 

pipelines. In the next section, however, we will see that we do not use the exact values of the 

partial derivatives, but only use their ranking to select the most promising option (repair or 

shipment) for TPT reduction. 

                                                      
2
 We note that the indices g6  have a different definition in Sherbrooke than in our paper.  
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2.4 Optimization heuristic 

At first sight, we can easily extend the greedy heuristic for spare part optimization by adding 

extra options for TPT reduction. We estimate the impact of repair TPT reduction of item � at 

location � on the total LRU backorders using the partial derivatives as found in the previous 

section: �� RC� RD − � RC� R + 1D� ∑ ∑ )WQ, RQ∈EW∈z . This is obviously an approximation, but it 

gives us a good idea on the impact of TPT reductions. We compare this impact to the additional 

costs, being the additional repair costs times the number of repairs per year:  �! Rj v� RC� R + 1Dw − ! Rj v� RC� RDw� � R8 R. So, we have the following simple approximation for 

backorder reduction per euro ΔjC� RD due to repair TPT reduction of item � at location �: 

ΔjC� RD = � RC� RD − � RC� R + 1D�! Rj v� RC� R + 1Dw − ! Rj v� RC� RDw� � R8 R t t )WQ, RQ∈EW∈z  
(2.12) 

The backorder reduction per euro due to transportation TPT reduction ΔkC
 RD equals 

ΔkC
 RD = i RC
 RD − i RC
 R + 1D�! Rk vi RC
 R + 1Dw − ! Rk vi RC
 RDw� � RC1 − 8 RD t t �WQ, RQ∈EW∈z  
(2.13) 

We denote the standard backorder reduction per euro from VARI-METRIC, due to adding a 

spare part � at location � to stock, by Δ-CU RD. Now a logical extension of the greedy VARI-

METRIC heuristic is to add all options for TPT reduction, and to select at each iteration the 

decision that yields the highest backorder reduction per euro spent. This can be either adding a 

spare part to stock, or a discrete step reduction in either repair or transportation TPT. 

Unfortunately, this heuristic does not work well, since TPTs and stock levels are not 

independent: If we add stocks, the impact of TPT reduction decreases. We typically see that we 

initially decide to reduce many TPTs, because there are hardly any spare part stocks and so the 

impact of TPT reduction is high. If spare part stock levels are zero, any hour reduction of TPT is 

an hour reduction in system down time. When we have added spare parts to stock, we find out 

that the impact of these TPT reductions decreases, and finally we may even end up with a 

solution that is worse than the one VARI-METRIC provides while ignoring the options for TPT 

reduction. So, we have to find another heuristic. 

As the problems above are caused by the generally decreasing impact of TPT reduction on the 

spare part inventories, it seems better to construct a heuristic that considers TPT reduction 

while stock levels are decreasing rather than increasing. The basic idea is the following. First, we 

apply VARI-METRIC using the standard TPTs � R"0# and i R"0#. Then, we improve this solution 

by replacing the spare stock levels having the least added value with TPT reductions having the 

most added value. The spare part having least added value is the last one we added to stock in 
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the VARI-METRIC algorithm. We search the best (set of) TPT reduction(s) compensating the loss 

of availability by removing the latter spare parts. If these TPT reductions cost less per year than 

the holding cost of the removed spare part, we accept the stock level reduction. We continue 

until no improvement is found. So, our basic algorithm is as follows: 

Basic optimization heuristic 

1) Initialize the decision variables: U R = 0, � R = 0, 
 R = 0 "� ∈ f, � ∈ M#. 

2) Use VARI-METRIC to optimize the spare part stock levels for the TPTs � RC� RD and i RC
 RD 

(� ∈ f, � ∈ M). Keep track of the order in which spare parts are added to stock (item �, location �). Let us denote that list by (��, ��), being the type of item �� and the location �� that has 

been added to stock in iteration � (� = 1 … �). Compute partial derivatives ) R,WQ and � R,WQ. 
3) Consider compensating stock reduction of spare part (��, ��) by TPT reduction. The cost 

savings per year are ℎ �. Set the additional costs for TPT reduction equal to !{j = 0. Set �∗ = �� and �∗ = ��. 

a. Recalculate the expected backorders and the partial derivatives that have changed (that 

is, for all combinations of (i) items in the same branch of the multi-indenture structure as �∗ (parents and children), and (ii) locations in the same branch of the multi-echelon 

structure as �∗ (customers and suppliers). If the sum of expected LRU backorders at bases 

is greater than or equal to the target $�i{'7|}~, then go to Step 3b, else go to 3c 3. 

b. Select the best TPT reduction from the options � R, 
 R by selecting "�∗, �∗# from  

"�∗, �∗# = arg min" ,R# �min vΔjC� RD, ΔkC
 RDw� (2.14) 

If the minimum is attained for a repair TPT reduction, then set 

!{j ≔ !{j + �! ∗R∗j v� ∗R∗C� ∗R∗ + 1Dw − ! ∗R∗j v� ∗R∗C� ∗R∗Dw� � ∗R∗8 ∗R∗ ,  

and � ∗R∗ ≔ � ∗R∗ + 1  

else set !{j ≔ !{j + �! ∗R∗k vi ∗R∗C
 ∗R∗ + 1Dw − ! ∗R∗i vi ∗R∗C
 ∗R∗Dw� � ∗R∗C1 − 8 ∗R∗D, 

and 
 ∗R∗ ≔ 
 ∗R∗ + 1. 

Return to step 3a. 

                                                      
3
 This will never occur in the first iteration, but may happen in next iterations. 
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c. If !{j < ℎ � , the costs of TPT reduction are less than the cost savings of removing a spare 

part, whereas we attain the target backorder level. Accept this stock reduction and go to 

Step 4. Otherwise, keep item �� on stock at location �� and STOP. 

4) � ≔ � − 1; If � ≥ 1 and there are still options for TPT reduction left, then consider the 

next spare part for stock reduction: Go to Step 3. 

Because we only have to update a limited number of partial derivatives each time we modify 

spare part stock levels or TPTs (Step 3a), the algorithm is pretty fast (from a fraction of a second 

to various minutes, depending on the size of the problem). The basic heuristic stops if it is not 

cost effective to reduce TPT to compensate for stock reduction of a single spare part. A 

straightforward extension is to consider stock reduction of two or more spare parts 

simultaneously, compensated by pieces of TPT reduction. In principle, we can continue until we 

run out of either options for spare part reduction or options for TPT reductions, whatever 

comes first (usually the TPT reductions come first). This may seriously increase the computation 

times, however. As a compromise, we consider stock reduction of multiple spare parts 

compensated by one or more pieces of TPT reduction, until the next best marginal effect of TPT 

reduction according to criterion (2.14) is less that the impact of removing the next spare part, 

being the total increase in LRU backorders at the bases divided by the decrease in costs ℎ � . 

An obvious drawback of our heuristic is that the optimality gap is unknown. However, an 

optimal algorithm is not easy to find. An option is an approach similar to the method by Basten 

et al. (2012a) for the integration of decisions for repair locations and resource locations (Level of 

Repair Analysis) and spare part inventories. Such an approach is out of scope for this paper (see 

also Section 2.6). Advantages of our heuristic are its simplicity and speed, such that we are able 

to analyze models of realistic size. Moreover, the construction of the heuristic guarantees that 

we only find solutions that are as least as good as the standard VARI-METRIC procedure without 

considering TPT reductions. 

2.5 Experiment and results 

In this section, we design a numerical experiment to analyze the savings that can be obtained 

using joint optimization of spare part inventories and TPTs and to characterize its type of 

policies. We present our experimental design in Section 2.5.1, and discuss results in Section 

2.5.2. We illustrate our method in a case study at Thales Netherlands (Section 2.5.3). 

2.5.1 Experimental design 

We focus on two-echelon, two-indenture networks. The holding cost rate is 25% of the item 

value per year, and the transportation time i R equals 0.02 years for all items and bases. We 

vary the size and type of the problem as specified in Table 2.1.   
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Experimental factor low value high value 

Number of LRUs 25 100 
Average number of SRUs per LRU 0.5 2 

Average demand per LRU per base � R (per year) 0.05 0.25 

Number of bases 3 10 

Average repair time � R over all items (year) 0.05 0.25 

Repair costs as a percentage of the item value 15% 30% 

Transportation costs (€) 100 500 

Target availability 0.95 0.99 

Table 2.1 Experimental factors. 

For each setting, we generate randomly 25 problem instances as follows.  

1) We draw the demand per year per base for each LRU ��� "� ∈ �, � ∈ �# from a continuous 

uniform distribution around the mean with minimum demand rate 0.002. 

2) We randomly assign the SRUs to LRUs using equal probabilities. 

3) If an LRU has one or more SRUs, the probability that no SRU needs to be replaced upon LRU 

failure is always 0.1, whereas the remaining 0.9 probability mass is allocated to the SRUs 

based on a continuous uniform distribution (giving the cause probabilities gW ). 
4) We draw the net value per item from a shifted exponential distribution with lower bound 

€400 and mean €6000; the gross LRU value includes the net values of its SRUs. 

5) All items can be repaired at the central depot (8 R = 1 if � represents the central depot). At 

the bases, the repair probabilities 8 R only depend on the item � and are drawn from a 

continuous uniform distribution on the interval [0.1, 0.9].  

In all cases, we consider the following options for TPT reduction (Table 2.2): 

Repair Transportation 

TPT reduction Cost increase TPT reduction Cost increase 

25% 40% 50% 100% 

50% 100% 

75% 700% 

Table 2.2 Scenarios for repair TPT reduction and transportation TPT reduction. 

We use fewer options for transportation TPT reduction, because these times are usually much 

smaller than repair TPTs. Altogether, our experiment consists of 28 (8 experimental factors) * 25 

(random problem instances per setting) = 6,400 problem instances. 
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2.5.2 Numerical results 

2.5.2.1 Savings percentage 

We compute the cost savings from including throughput time reductions as decision variables in 

the optimization. That is, we compute the total costs as specified in the goal function of 

optimization problem ")1# in Section 2.2.3 after optimization to the total costs after Step 1 of 

our algorithm (i.e. application of VARI-METRIC using standard TPTs only). Over all 6,400 problem 

instances, we find average cost savings of 19.8%.  

Figure 2.4 shows the impact of the experimental factors on the savings, sorted by magnitude of 

impact. We observe that the average demand per LRU has the highest impact: TPT reduction is 

particularly profitable if demand is low. This makes sense, because repair and transportation 

costs increase proportionally in the demand, whereas spare part holding costs increase less than 

proportionally because of the portfolio effect. Further, the savings percentage decreases with 

the target availability, the number of LRUs in the system, the mean repair costs, and the mean 

repair time. The impact of the average availability and the number of LRUs is remarkable. In 

both cases, the average downtime allowed per LRU decreases. A possible explanation is that low 

downtime requirements per LRU lead to high spare part stock levels, and then the impact of TPT 

reduction is relatively low. The other factors (average number of SRUs per LRU, number of 

operational sites, transportation costs) have a marginal impact on the cost savings. We expect 

that higher transportation costs would lead to less reduction in order-and ship times and so to 

less cost savings. We do not see this in the savings percentage, but we see it in the type of policy 

that we choose. We will discuss these policies in more detail below (Section 2.5.2.2). 

 

Figure 2.4 Impact of the experimental factors on the average cost savings (see Table 2.1  for the high and low 

settings per factor). 
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2.5.2.2 Type of policy 

To examine the type of policy we find for the TPTs, we measure the degree of TPT reduction in a 

single problem instance by the weighted average percentage TPT reduction with the number of 

(repair or transportation) jobs as weights. We distinguish between the levels in the multi-

echelon system and the levels in the multi-indenture structure. Obviously, we find most TPT 

reduction in the problem instances with the highest savings. Apart from that observation, the 

following observations are interesting: 

• The average reduction in repair TPT is 8.5% for all upstream repairs and 24.8% for all 

downstream repairs. Clearly, we have most TPT reductions downstream in the network. 

• We observe most TPT reduction for repairs downstream (at the bases) when repair costs are 

low and repair times are high (38% reduction). 

• We hardly use repair TPT reduction of SRUs at the central depot (6.4% on average). We find 

the highest reduction in case of few bases and low demand rates (still only 12.7%). 

• The average reduction in transportation TPT between central depot and bases is 25%.  

• Although the transportation costs have little impact on the savings (see Figure 2.4), they 

influence the type of policy. The average TPT reduction is 34% if the costs per shipment are 

€100, and 16% for transportation costs of €500. So, we indeed reduce the transportation 

TPT less if the costs are higher.  

2.5.2.3 Impact of scenarios for TPT reduction 

If we only consider repair TPT reductions and no transportation TPT reductions, we still get 

significant average cost savings, namely 14.9% instead of 19.8%. If we limit the options to 

transportation TPT reductions however, the average cost savings are 3.3% only. It is remarkable 

that the joint effect of repair and transportation TPT reductions is larger than the sum of the 

separate effects. 

Next, we analyze the impact of the number of scenarios for TPT reduction (i) by excluding 

scenarios for repair TPT reduction (we only allow cutting repair TPTs in half at twice the costs), 

and (ii) by adding scenarios for TPT reduction. In the latter case, we considered the following 

options for both repair and transportation TPTs as given in Table 2.3.  We find that the average 

savings decrease from 19.8% to 16.0% if we reduce the number of options for TPT reduction. 

Under additional options, the average savings increase from 19.8% to 22.3%. So, the number of 

discrete steps in TPT reduction has impact, but it is not very large. We already achieve 

significant gains with a single alternative option for TPTs only. 
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Repair Transportation 

TPT reduction Cost increase 

reduction 

TPT reduction Cost increase 

reduction 10% 10% 10% 10% 
25% 40% 25% 40% 

50% 100% 50% 100% 

60% 300% 60% 300% 

75% 700% 75% 700% 

Table 2.3 Scenarios for repair and transportation TPT reduction. 

2.5.2.4 Three-echelon, three-indenture systems 

To examine whether our findings remain valid for other network types, we designed a similar 

experiment for three-echelon, three-indenture networks. The cost savings are somewhat higher 

on average (24.8%), but the other findings are similar to two-echelon, two-indenture systems. 

The only new finding is that we observe a larger impact of the multi-indenture structure on the 

cost savings. Higher savings are feasible for the combination of more SRUs per LRU and more 

subcomponents per SRU, so for a "heavier" multi-indenture structure (29.2% savings). We 

particularly observe a higher reduction in repair TPTs as well as and transportation TPTs 

downstream (and particularly for LRUs).  

2.5.3 Case study 

To evaluate our method in a practical setting, we collected data for a part of a radar system at 

Thales Netherlands. The detailed data are confidential, but we give an outline of the key 

characteristics below. The data are related to a service contract covering six radar systems 

onboard of six frigates. Spare parts are supplied in a three echelon system from Thales 

Netherlands via a shore organization to the frigates. Spare parts may be stocked and repaired at 

each of the three levels. The subsystem consists of 114 different items, spread among two 

indenture levels (LRUs and SRUs). The item values vary from a few hundreds of euro’s to more 

than €100,000 (LRU including SRUs). The options for TPT reduction are: 

• Repairs at Thales Netherlands can be processed via a "fast channel" at extra labor costs, 

yielding a repair TPT reduction of 50% on standard values of several months. The extra labor 

costs are related to the product value and may easily exceed €1,000. 

• Transportation TPT from Thales Netherlands to the Shore can be reduced from 14 days to 7 

days at limited extra costs (extra transport by an express courier service). 

• Transportation TPT from the shore organization to the ships can be reduced from 5 days to 2 

days, but this yields huge extra costs (magnitude €10,000), since an additional helicopter 

flight from the Shore to a frigate on a mission is needed.  
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Application of our heuristic yields 6.3% savings on the spare part holding costs at extra repair 

and transportation costs equal to 0.7% of the original inventory investment, so we have a net 

saving of 5.6%. Note that this is not a percentage over the total spare part holding, repair and 

transportation costs, since we were not able to specify repair and transportation costs for the 

standard TPTs. In fact, we only need the additional costs of TPT reduction to apply our method. 

Although the savings are relevant for Thales Netherlands given the amount of money involved, 

it is clear that the savings are considerably less than the average that we observed in our 

theoretical experiments. We have the following explanation for this: 

• The theoretical experiments show that TPT reduction downstream in the network is usually 

most profitable. However, Thales Netherlands can only influence repair times at the own 

site, since both the shore and the ships are part of the customer organization. Therefore, we 

only considered repair TPT reduction upstream in the supply chain.  

• The same applies to the transportation TPT: reduction downstream is extremely expensive 

(helicopter flights) and therefore no realistic option. Only TPT reductions upstream are 

feasible at reasonable costs. 

• We have only two options for repair TPTs, namely either a normal or a fast repair. As shown 

in Section 2.5.2.3, this reduces the potential for cost savings. 

2.6 Conclusions 

We developed a heuristic for the joint optimization of spare part inventories and TPTs of repair 

and transportation based on pricing of TPT reductions for multi-item, multi-echelon, multi-

indenture spare part networks. Our heuristic is easy to apply and yields significant cost 

reductions compared to the standard VARI-METRIC method for spare part optimization where 

TPTs are fixed. We find that it is particularly profitable to reduce TPTs downstream in the supply 

chain. Repair TPT reduction of lower indenture items upstream in the supply chain is less useful. 

In a case study at Thales Netherlands, we find a cost reduction of 5.6%, which is somewhat low 

compared to our theoretical experiments. This is due to the fact that TPT reductions 

downstream in the Thales network are very expensive because of the special business 

characteristics (an installed base of radar onboard of frigates). 

Our approach is flexible and heavily relies upon the VARI-METRIC method for inventory 

optimization in multi-echelon, multi-indenture networks. As a consequence, we believe that 

known model extensions to VARI-METRIC can be included in our approach rather easily, 

thereby relaxing some model assumptions as mentioned in Section 2.2.1. For example, we can 

include the VARI-METRIC variants to deal with negative binominal demand (assumption 1), 

differences in item criticality (assumption 2), replenishment order quantities larger than 1 

(assumption 8), stochastic order-and-ship times (assumption 11), and commonality among 
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items (assumption 12) (Sherbrooke, 2004). Other model assumptions lead to considerably more 

complex models, in particular relaxing assumption 10 to include the use of lateral supply 

between stock points at the same level in the multi-echelon structure. Even disregarding 

throughput time reductions, a complete approach for lateral supply in general multi-echelon, 

multi-indenture networks is still missing. Most models consider single or two-echelon networks 

with a single indenture level only (Paterson et al., 2011). This is a topic for further research. 

Other further research would be the development of a method for exact optimization of this 

model to provide a benchmark for the performance of our heuristic. The approach as applied by 

Basten et al. (2012b) for the joint optimization of the spare part provisioning and Level Of 

Repair Analysis (LORA) problem seems to be most promising. However, we expect that an exact 

method require more computation time, so that it will not be suitable to solve problem 

instances of practical size. 

In the subsequent chapter, we consider differentiation at a customer level in addition to 

differentiation at an item level. Specifically, we assume that we have various customer 

segments that each have distinct service requirements, resulting in the need to differ service 

over these customer segments.  
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Chapter 3  

Selective emergency shipments4 

3.1 Introduction 

In the previous chapter, we focused on differentiation on an item level in spare parts supply by 

selectively reducing item throughput times. In this chapter, and Chapter 4 and 6, we apply 

differentiation on both an item level and a customer level. Specifically, we consider new tools at 

a tactical level to differentiate service to customers based on their service requirements. In this 

chapter, we focus on selective emergency shipments. Differentiation through selective lateral 

transshipments and dedicated stocks are discussed in Chapter 4 and 6 respectively.  

In the selective emergency shipment model, unmet demand in the supply chain can either be 

backordered or satisfied using an emergency shipment from a secondary source with infinite 

supply, with the latter option being both faster and more expensive. We should thus investigate 

for which combinations of customer segments and item types it is a viable approach. Naturally, 

emergency shipments will be most beneficial for the customers with the highest service level 

requirements. However, the characteristics of an item also determine the added value of using 

emergency shipments: for inexpensive fast moving items, emergency shipments might be too 

expensive for any customer segment, whereas for expensive slow movers it might be better to 

minimize stocks and use emergency shipments for all demand.  

We make the following contributions to the literature in this chapter: first, we develop two 

efficient and effective heuristics to find near-optimal stock levels and shipment strategies in a 

multi-item system with one warehouse and multiple customer segments. Second, we show how 

to analyze this system for a single item given a warehouse stock level and shipment strategy. 

We require such an analysis approach as a building block in a multi-item optimization. Third, in 

an extensive computational experiment, we compare the selective emergency shipment model 

to two benchmarks, namely (i) the one-size-fits-all strategy where a uniform service fulfillment 

process is used for all customers and (ii) the critical level policy. We then show that our model 

leads to clear savings over one-size-fits all strategies and can lead to savings that are close to 

those found with critical level policies. Finally, we will show that it is very effective to combine 

selective emergency shipments and critical level policies for service differentiation.  

                                                      
4
 This chapter is based on the paper “The selective use of emergency shipments for service-contract 

differentiation” by E. M. Alvarez, M. C. van der Heijden, and W. H. M. Zijm, International Journal of Production 

Economics, 143(2), pp. 518 – 526. 
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The remainder of the chapter is structured as follows. We state our optimization problem and 

solution approach in Sections 3.2 and 3.3 respectively. In Section 3.4, we describe how we 

analyze the system for a single item for the special case with two customer classes. We give the 

results of the numerical experiment in Section 3.5. In Section 3.6, we formulate conclusions. 

3.2 Model 

We first present an outline of our model in Section 3.2.1. Next, we discuss the validity of our 

selection of shipment policies (Section 3.2.2). In Section 3.2.3, we present our model 

assumptions and notation. We discuss the formal optimization problem in Section 3.2.4. 

3.2.1 Model outline 

Consider a local warehouse that supplies various types of parts to multiple customer classes, 

and a central depot with infinite supply that replenishes the local warehouse. All customers 

have the same system, with each item in the system being critical (i.e. an item failure causes a 

system failure). Each customer class has a distinct amount of time it is willing to wait for parts 

on average. The warehouse fills demand from all classes on a first-come-first-served basis. If it is 

out of stock, the warehouse may backorder the demand or request an emergency shipment 

from the central depot. We achieve service differentiation by only using emergency shipments 

for customer classes with tight waiting time restrictions. We expect this to be particularly 

beneficial for expensive slow movers that often have low fill rates (making the difference 

between regular and emergency shipment times crucial). Still, it will sometimes be better to 

avoid stocks altogether and use emergency shipments for all classes. Conversely, for cheap fast 

movers it is probably better to keep sufficient stock (avoiding expensive emergency shipments) 

and use full backordering. The shipment mode should thus depend on both the item 

characteristics and waiting time constraints per customer class. 

In addition to the above model, we also consider a model where critical levels and selective 

emergency shipments are jointly used for differentiation. This combined model only satisfies 

demand from on-hand stock if it exceeds the critical level for the customer’s class. Demand that 

cannot be met from on-hand stock is satisfied using either backordering or emergency 

shipments. 

The objective in both models is to minimize system holding and shipment costs, under 

restrictions on the mean aggregate waiting time per class. Firms like Philips Healthcare and Océ 

Technologies usually have service level requirements with their clients in terms of e.g. average 

failure resolution times, with delays often being caused by waiting time for spares. Penalties 

may apply if the supplier violates the agreements, but we have not seen explicit backorder costs 

in service contracts. Therefore, we do not include penalty costs per unit waiting time in our 
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objective function. Our decision variables are the item stock levels, and the shipment mode 

(regular, emergency) and critical level for each item and customer class. 

3.2.2 Selection of shipment policies 

In our model, we do not consider the state of the pipeline when selecting a shipment mode for 

a particular customer class. However, by incorporating pipeline information in our decision 

making, we likely find better shipment strategies. For instance, if the pipeline contains many 

items, the emergency shipment time might exceed the backorder waiting time, making 

backordering the faster and cheaper option. Conversely, if there are few or no items in the 

pipeline, emergency shipments might be needed to minimize waiting time. Still, we do not 

consider the complete system state when selecting a shipment mode to keep the notation 

transparent and reduce computational effort. After all, we are primarily interested in the 

suitability of selective emergency shipments for differentiation compared to critical level 

policies and the “one-size-fits-all” approach. 

3.2.3 Assumptions and notation 

3.2.3.1 Main assumptions 

1. Demand for each item occurs according to a Poisson process.  

2. An "� − 1, �# base stock policy is applied for all items. In practice, spares often tend to be 

expensive slow movers. Therefore, holding costs usually dominate ordering costs and hence 

the optimal order quantity is usually 1.  

3. Regular shipment times from depot to warehouse are exponentially distributed. This 

assumption facilitates Markov chain analysis. Also, we show in Section 3.5.3.1 that the 

system performance measures are insensitive to the lead time distribution. 

4. The shipment time from the local warehouse to the customer is negligible.  

5. An emergency shipment is shipped directly from central depot to customer (i.e. the shipment 

does not pass through the local warehouse).  

6. We consider an infinite horizon. As a result, the mean waiting time for any customer in class � will equal the average waiting time of class � as a whole. 

3.2.3.2 Notation 

For each item � = 1,2, … , f, we denote the mean replenishment lead time by � 7}|
, the 

emergency shipment time by � }&, the holding costs per time unit by ℎ  and the additional costs 

for an emergency shipment over a normal replenishment by �! }&. The latter cost factor is 

sufficient, since each request triggers either a normal replenishment or an emergency shipment. 
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Customers are assigned to classes � = 1, … , M, each having an upper limit %R&'( on the average 

waiting time for parts. W.l.o.g. we assume that class � has a higher priority than class Y (� < Y), 

and therefore %0&'( ≤ %R&'( (� ≥ 2). Class � demand for item � occurs at rate � R ( 0> ). �.R = ∑ � Ry F0  and � . = ∑ � RTRF0  denote the total mean demand for class � and for item �, 

respectively. The decision variables for item � are:  

• The base stock level � .  
• The vector � = �! 0, … , ! T� denoting the critical levels per class, with ! R denoting 

the among of stock reserved for classes 1 up to � − 1. As it is never optimal to 

withhold stock from the highest priority class, ! 0 = 0. 

• The shipment strategy � , denoting the highest customer class index for which 

emergency shipments are used in a stock-out situation. �  is an integer between 0 

and M, as emergency shipments are only sensible for higher priority customers.  

We combine all variables into an item policy "� , � , � # with mean waiting time $% R"� , � , � # 

and fill rate s R"� , � , � # for item � and class � as performance indicators. 

3.2.4 Formal optimization problem  

We express the formal optimization problem ")1# as follows: 

")1# min�:,l: ,�: t �ℎ � + �! }& t � R v1 − s R"� , � , � #w fH0…l:J"�#T
RF0 �y

 F0  

s.t. t � R�.R $% R"� , � , � #y
 F0 ≤ %R&'( � = 1, … , M "3.1# 

 � ∈ �6, � ∈ H0,1, … , MJ, ! R ∈ H0,1, … , � J � = 1, … , f, � = 1, … , M  

 

We minimize holding and emergency shipment costs with the demand-weighted mean waiting 

time for class � not allowed to exceed target %R&'(. The indicator function fH0…l:J"�# equals 1 if 

emergency shipments are used for class � (i.e. � ∈ H1 … � J) and 0 otherwise. We compute 

holding costs over the total stock � , including items in the pipeline. It is easy to compute 

holding costs over the on-hand stock instead (Kranenburg and Van Houtum (2008)). 
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3.3 Solution approach 

Problem ")1# is a nonlinear integer problem that we cannot decompose into separate single-

item problems because of the aggregate waiting time restrictions (3.1). This differs from a 

variant with backorder costs where such a decomposition is possible and the f single-item 

problems can be solved easily (see Section 3.3.2). We use an approach similar to Dantzig-Wolfe 

decomposition: We reformulate ")1# to a linear integer programming problem and solve its LP-

relaxation to find a lower bound. In this section, we specify how the approach can be used for 

our optimization problem. We first show how to reformulate ")1# to a linear problem and find 

a lower bound (Sections 3.3.1 and 3.3.2 respectively). As the lower bound is generally fractional, 

Section 3.3.3 gives two heuristics to find near-optimal integer solutions.  

3.3.1 Reformulation to a linear problem 

Let �  be the set of item policies we consider for item �, with 
 7 = C� "8#, � "8#, � "8#D 

denoting a single item policy in this policy set (so 
 7 ∈ � , with 8 = 1,2, … , |� |). Furthermore, 

let the binary variable <9:;  indicate whether policy 
 7 is selected for item � or not (<9:; = 1 or 

0). We then obtain the linear integer program ")2#. 

")2# min t t �! "
 7#<9:;
|E:|
7F0

y
 F0  

s.t. t t � R�.R $% R"
 7#<9:; ≤ %R&'(|E:|
7F0

y
 F0  � = 1, … , M "3.2# 

 t <9:; = 1|E:|
7F0  � = 1, … , f "3.3# 

 <9:; ∈ H0,1J � = 1, … , f, 8 = 1, … , |� |  

 

Here, �! "
 7# is shorthand for the total costs related to item � under policy 
 7, so �! "
 7# =�! C� "8#, � "8#, � "8#D = ℎ � "8# + �! }& ∑ � R v1 − s RC� "8#, � "8#, � "8#DwTRF0 fH0…l:"7#J"�# 

3.3.2 Finding a lower bound for the total costs  

We first solve the LP-relaxation of ")2# with an initial item policy set that results in a feasible 

solution. Then, we use column generation to iteratively find new item policies that improve the 

solution if added. We stop once such policies no longer exist. For further details on column 

generation, we refer the reader to Section 1.9.2. In this model, we find a single initial policy for 

each item � by setting �  to 0 and only increasing � . Then, we iteratively add the policy with the 

lowest reduced costs to � , if these are negative. The reduced costs for policy 
 , denoted by 
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�$�"
 #, are given by the expression below, with \R"≤ 0# and � "≥ 0# denoting the current 

shadow prices for constraints (3.2) and (3.3) respectively. For simplicity, we omit suffix 8.   

�$�"
 # = �!"
 # − t \R� R�.R $% R"
 # − � 
T

RF0  

For each shipment strategy � , we first find the values for �  and �  that give minimum reduced 

costs. Next, we select the item policy with minimum reduced costs over all shipment strategies. 

A complication in finding an optimal item policy for a shipment strategy is that the reduced 

costs are rarely convex as a function of �  and/or � : the reduced costs are only convex in �  if ! R = 0 for all classes and � = M. Then, there is no stock rationing and all unmet demand is 

satisfied through emergency shipments (see Kranenburg and Van Houtum (2007a)). However, 

from some value onwards, �$�"
 # will only monotonically increase in � , irrespective of the 

values for �  and � : as �  increases, the holding costs increase linearly, whereas the costs 

related to emergency shipments and waiting time decrease and eventually become negligible. 

We thus find an upper bound on �  (and all ! R) when the holding costs outweigh the other cost 

elements in �$�"
 #. 

3.3.3 Methods for finding a near-optimal integer solution  

We find near-optimal integer solutions using 2 methods: (1) we use the (non-integer) LP 

relaxation solution as a starting point for local search; (2) we solve integer problem ")2# with all 

policies generated for finding the lower bound. In the literature (e.g. Kranenburg and Van 

Houtum (2008)), method 1 is often used, but we show in Section 3.5.3.2 that method 2 works 

better.   

3.3.3.1 Method 1: use a local search algorithm 

Kranenburg and Van Houtum (2008) find an integer solution by first selecting for each item in 

the LP-relaxation solution the policy 
 7 with the lowest stock level, subject to <9:; > 0. As the 

resulting solution is usually infeasible, they then iteratively increase the stock level of one item 

until they find a feasible solution. In each iteration, the item is selected that leads to the largest 

decrease in the total gap between target and actual mean waiting times per invested euro.  

Obviously, we have to adapt this method in order to deal with multiple shipment modes. Our 

criterion for selecting a new item policy also differs from that of Kranenburg and Van Houtum. 

The latter authors place equal value on reducing either the waiting time for premium customers 

or that for non-premium customers. We, however, expect that a larger marginal investment is 

needed to reduce a small waiting time by an amount < compared to reducing a large waiting 

time by the same amount. Hence, it might be beneficial to select a policy that reduces premium 

waiting times (that are generally small) by a certain amount over an alternative that reduces 

non-premium waiting times by a greater amount. To incorporate the fact that the value we 
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place on waiting time reduction may differ per class, we assign weights to the waiting time 

reduction amounts of each class and then iteratively select the item policy leading to the largest 

weighted waiting time reduction per extra investment. We now give further details on both the 

neighborhood construction and policy selection criterion.    

We incorporate multiple shipment modes when constructing a neighborhood (i.e. the solutions 

close to the current solution from which we choose a new solution). Our neighborhood contains 

solutions with either a larger stock level �  than the current solution or a faster shipment 

method (i.e. a larger value for � ). If we increase � , we combine this with all values of �  
smaller than or equal to the current shipment strategy provided that the resulting policy has 

lower waiting times. Similarly, when we increase � , we combine this with all values of �  that 

are smaller than or equal to the current value insofar that the policy waiting times are lower. 

This gives us several neighbors for each SKU �. We consider multiple decision variables to 

increase the probability of finding a feasible solution more quickly.   

Furthermore, in our selection criterion we place greater value on reducing waiting times of 

premium customers compared to those of non-premium customers. We do so by assigning a 

higher weight to a waiting time reduction for the premium class. We realize that it is not trivial 

to translate the value placed on waiting time reduction in adequate class-specific weights. Still, 

for simplicity we use the inverse of %R&'( as a weight for class �. Then, the waiting time 

reduction for classes with very low waiting time targets gets a correspondingly high weight. We 

obtain the following expressions for the reduction in waiting time ΔW "
 7  # and the additional 

investment Δ�! "
 7  # compared to the current policy 
 7, with 
 7   denoting a new item policy:   

Δ% "
 7  # = t 1%R&'( �¡t � R�.R $% R"
 7# − %R&'(y
 F0 ¢2 − ¡t � R�.R $% R"
 7  # − %R&'(y

 F0 ¢2�T
RF0  

(3.4) 

Δ�! "
 7  # = tC�! "
 7  # − �! "
 7#Dy
 F0  

(3.5) 

In (3.4), `�a2 = maxH0, �J. When evaluating item policies, we may find alternatives 
 7   with 

both lower costs and lower waiting times than 
 7. Then, we select the policy with the largest 

value for Δ% "
 7  #/Δ�! "
 7  # over those with lower costs instead of over the entire 

neighborhood. We realize that we do not necessarily select the best item policy in this way. 

However, the criterion used does not seem to matter, as we observed in a computational 

experiment with 64 instances: in that experiment, the solutions found if we selected the policy 

with the largest value of Δ% "
 7  # from those with lower costs were exactly the same as those 

when we used Δ% "
 7  #/Δ�! "
 7  # as a selection criterion.  
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3.3.3.2 Method 2: Use of Integer Programming (IP) 

When solving the LP-relaxation, we usually only generate 4 to 7 item policies per item. 

Therefore, we should be able to solve the corresponding integer problem with a commercial 

solver (we used CPLEX) for most problems of realistic size. However, the generated item policies 

are not always related, especially for fast moving items. For instance, for a problem instance 

with two customer classes we have found policies "� , � , ! 1# of (0,1,0) (i.e. no stock, 

emergency shipments for premium customers only), (9,0,0) and (10,0,0) (i.e. high stock levels, 

full backordering) for the same item. To test the quality of our method when using the 

relaxation policy set, we compared the resulting solutions to those found when we include 

additional item policies in the IP that bridge the gap between the distinct item policies5. We 

found that these additional policies greatly increase computation time, while the solution 

quality improves only marginally: the average gap to the lower bound drops from 0.041 to 

0.038, and the maximum gap drops from 0.259 to 0.258. Therefore, we find that it is sufficient 

to only use the item policies generated when solving the LP relaxation. 

3.4 Evaluating item policies with two customer classes 

We use continuous-time Markov chain analysis to find performance measures for an item 

policy. For simplicity, we limit ourselves to two customer classes in the remainder of this 

chapter. In Chapter 8, we discuss extensions to more than two classes. We thus consider three 

shipment strategies: use emergency shipments for both classes (� = 2), for class 1 only (� =1), or not at all (� = 0). Per item, we have a critical level for the non-premium class (denoted 

by !  from now on). Under backordering, we find the expected waiting time by Little’s Law: $% R"� , � , ! # = $�i R"� , � , ! #/� R , with $�i R"� , � , ! # being the average number of 

backorders for item � and class �. When emergency shipments are used, $% R"� , � , ! # equals v1 − s R"� , � , ! #w � }&. Section 3.4.1 first describes the pure selective emergency shipment 

models, where critical levels are not used. Section 3.4.2 then describes the combined shipment 

models, which incorporate critical level policies. For simplicity, we omit the item index � and 

denote the normal replenishment rate by r = 1/�7}| and the total item demand rate by � 

instead of �.. 
3.4.1 Pure selective emergency shipment models 

Pure model, emergency shipments for both classes "£¤ = ¥#  

We model the pipeline as an Erlang loss system with � servers (Kranenburg and van Houtum, 

2007). Let Y denote the number in the pipeline. We find: 

                                                      
5
 This was a mid-sized experiment of 100 problem instances with 25, 100 and 400 items. 
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¦W = u�r xW 1Y! / t u�r x� 1�! 
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�F6  Y = 0, … , �  

s0"�, �# = s1"�, �# = 1 − ¦-   

 

Pure model, backorder class 2 demand only "£¤ = §# 

We define the state as the number of items in the pipeline Y, with state Y having `Y − �a2 class 

2 backorders. Figure 3.1 displays the Markov chain. Once the pipeline contains � or more items, 

class 1 demand is lost to the system. Closed-form expressions for the state probabilities ¦W, class 

1 fill rate and class 2 mean backorder level are given below the figure.  

 

Figure 3.1 Transition diagram for pure model with backordering of class 2 requests. 
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s0"�, �# = t ¦W
-�0
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$�i1"�, �# = u ��1x- ¦6 ¨�1r ©�&//� − t 1Y! u�1r xW-�0
WF6 ª − � ©�&//� − t 1Y! u�1r xW-
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Pure model, backorder demand from all classes "£¤ = ±# 

We use priority backorder clearing: class 1 backorders are cleared before class 2 backorders, 

even if a class 2 backorder occurred first. Therefore, we need a two-dimensional state space, 

since the number of backorders per class can even differ among states with the same number of 

items in the pipeline. We use states "Y, 	#, with Y the number in the pipeline and 	 the number 

of class 2 backorders. We then have ``Y − �a2 − 	a2 class 1 backorders. Figure 3.2 shows the 

corresponding Markov chain. Demand flows from "Y, 0# to "Y + 1,0# until the pipeline contains � items. Then, class 1 demands result in shifts from "Y, 	# to "Y + 1, 	#, while class 2 demands 
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result in shifts from "Y, 	# to "Y + 1, 	 + 1#. Replenishment flows go from "Y, 	# to "Y − 1, 	# 

whenever "Y, 	# has class 1 backorders. Then, the pipeline decreases, while the number of class 

2 backorders remains the same. Flows from "Y, 	# to "Y − 1, 	 − 1# only occur when "Y, 	# only 

has class 2 backorders.  

 

Figure 3.2 Transition diagram for pure model with full backordering. 

We could not find analytical expressions for the state probabilities, so we compute an upper 

bound Y²E on the number of items in the pipeline and solve the balance equations numerically. 

We find Y²E by aggregating all demand into a single class and analyzing the resulting �|�|∞ 

model exactly. Note that the pipeline distribution will be the same as in the two-class model, 

since the demand and replenishment rates are the same. We find Y²E such that  1 − ∑ ¦W ≤ ³W´A6  with ³ = 10�µ. We then find the following expressions for $�iR"�, �#: 

$�i0"�, �# = t t"Y − � − 	# ⋅ ¦WQ
W�-
QF6

W´A

WF-20  

 

$�i1"�, �# = t t 	 ⋅ ¦WQ
W�-
QF6

W´A

WF-20  

 

3.4.2 Combined models that incorporate critical levels 

We refer to Kranenburg and Van Houtum (2008) for the model with emergency shipments for 

both classes (� = 2) and only discuss the (partial) backordering models. 
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Combined model, backorder demands from all classes "£¤ = ±# 

We follow Ha (1997b), who shows the optimality of only clearing class 2 backorders once all 

class 1 backorders have been cleared and the on-hand stock is at least !. Our Markov chain 

(Figure 3.3) consists of states "Y, 	#, with Y the number in the pipeline and 	 the number of class 

2 backorders. We can simultaneously have stock on-hand (i.e., fewer than � items in the 

pipeline) and class 2 backorders, so we cannot derive the number of backorders from the 

pipeline alone. The Markov chain branches out at � − ! or more items in the pipeline (and thus 

at most ! items on-hand): then, class 1 demand is met from stock, with class 2 demand being 

backordered. Once we are out of stock, we also backorder class 1 demands. Most 

replenishment flows go from "Y, 	# to "Y − 1, 	#: we then clear class 1 backorders or increase 

on-hand stock.  

 

Figure 3.3 Transition diagram for combined model with full backordering. 

Since this model is very similar to the pure model with full backordering, we use the same 

approach to compute Y²E and find the state probabilities. We find for $�iR"�, �, !#: 

$�i0"�, �, !# = t t maxH0, Y − � − 	J ⋅ ¦WQ
W�-2¶

QF6
W´A

WF-20  

 

$�i1"�, �, !# = t t 	 ⋅ ¦WQ
W�-2¶

QF6
W´A

WF-�¶20  

 

This Markov chain (and hence the state probabilities) only depends on the value of � − !. 

Hence, we directly find the performance measures for all other policies with the same value for � − !, which greatly reduces the computational burden of analyzing item policies. 
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Combined model, backorder class 2 demand only "£¤ = §# 

We use state space "Y, 	# as above, see Figure 3.4. However, once we are out of stock now, 

denoted by states "Y, Y − �# with Y ≥ �, the pipeline only increases further from class 2 

demand. Increasing on-hand stock to ! has priority over clearing class 2 backorders.  

 

Figure 3.4 Transition diagram for combined model with backordering of class 2 requests. 

We determine Y²E by aggregating all demand and assuming full backordering. Using this value, 

we then solve the resulting balance equations. Note that our pipeline bound might be larger 

than necessary, since we assume full backordering when computing Y²E. For the performance 

measures we find: 

$�i1"�, �, !# = t t 	 ⋅ ¦WQ
W�-2¶

QF·¸¹H6,W�-J
W´A

WF-�¶20  

 

s0"�, �, !# = 1 − t ¦W,W�-
W´A

WF-  

 

3.5 Computational experiment 

We conducted a numerical experiment, for which we state the objectives in Section 3.5.1. 

Section 3.5.2 specifies the experiment design and Section 3.5.3 the results. 

3.5.1 Objectives 

Our objectives are: (i) to determine the sensitivity of the system performance measures to the 

replenishment lead time distribution in the selective emergency shipment model, (ii) to 

evaluate the two heuristics for obtaining a near-optimal solution (i.e. local search and IP) in 

terms of solution quality and computation time, (iii) to determine whether and when selective 

emergency shipments are effective for service differentiation, (iv) to compare selective 
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emergency shipments to critical level policies as differentiation tools, (v) to assess the added 

value of jointly using selective emergency shipments and critical level policies for differentiation.  

3.5.2 Experiment design 

Table 3.1 shows the tested parameter values, based on the values by Kranenburg and Van 

Houtum (2008), which are derived from observations in practice. We use $! }& = 1000 as cost 

normalization. For each combination of parameters 1, 3, 4 and 6, we generate 4 random 

instances as follows: for each item, a demand rate and holding cost is drawn from uniform 

distributions on the given intervals, with the correlation between demand rates and holding 

costs being -0.8. This is realistic, since fast movers tend to have low (holding) costs in practice 

and vice versa. Except for the demand rates and holding costs, all items in an instance have the 

same parameter values. We have 3456 instances in total: we have 864 parameter combinations 

and 4 demand rate/holding cost samples per combination. 

 Parameter Values 

1 Number of items f  25, 100, 400 

2 Daily demand rate per item � . º`0, 0.1a, º`0, 0.5a  

3 Fractions of class demand per item "� 0/� .; � 1/� .# (0.2; 0.8), (0.5; 0.5), (0.8; 0.2)  

4 C� 7}|; � }&D(in days) (4; 1), (8; 1), (8;2),(16; 2)  

5 Item holding cost interval (per unit per day) º`0.02, 19.98a, º`0.2, 199.8a, º`2, 1998a   
6 Target service levels "%0&'(; %1&'(# (in hours) (0.5; 2), (0.5; 4), (3; 12), (3; 24)  

Table 3.1 Parameter values of the tested instances. 

3.5.3 Results  

First, we estimate the sensitivity of the performance measures to the lead time distribution. 

Then, we evaluate the performance of the two heuristics described in Section 3.3.3. Next, we 

investigate whether and when the emergency shipment strategy has added value over one-size-

fits-all strategies. Finally, we compare the emergency shipment policy to the critical level policy 

and determine the added value of combining both policies.  

3.5.3.1 Sensitivity of performance measures to lead time distribution 

For a single-class system with emergency shipments, Alfredsson and Verrijdt (1999) show that 

the system performance measures do not depend on the distribution of the replenishment lead 

time. We now test whether this observation still holds for our selective emergency shipment 

model before proceeding to optimization. For 48 problem instances with one item, we used 

simulation to find mean waiting times per class for both deterministic and exponential lead 

times. The regular shipment time was 5 or 10 days, the emergency shipment time was 1 or 2 

days, and the class demand rates "�0; �1# were either "0.01; 0.04# or "0.1; 0.4#.   
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Per shipment strategy, we compute the waiting time deviations as a fraction of the 

exponentially distributed times. Table 3.2 shows the results for cases with waiting times of at 

least 10�c. We find that the lead time distribution still has little influence on the waiting times: 

in general, the average deviations are small. The deviations increase as backordering is used for 

more classes, particularly for class 1 waiting times, but the differences remain reasonable even 

under full backordering (we find deviations of 14% when $%0 is 1.5 and 1.7 respectively). Also, 

in practice we expect waiting times under backordering to show more variability than those 

under emergency shipments, especially when items are repaired (as is common for expensive 

slow movers). Under full backordering, we thus expect exponential shipment times to 

characterize the supply process more accurately than deterministic times. 

Shipment strategy Average deviation Maximum deviation 

 $%0 $%1 $%0 $%1 

Em. shipments for both classes 0.3% 0.1% 1.7% 0.6% 

Em. shipments for premium customers only 1.7% 0.3% 9.2% 0.9% 

Backordering for both classes 8.8% 0.7% 14.1% 1.5% 

Table 3.2 Performance comparison under exponential and deterministic lead times. 

3.5.3.2 Performance of the heuristics 

We express the solution quality in terms of a relative gap to the lower bound, defined as �!À − �!zE/�!zE, where �!À gives the solution value of the heuristic (IP or Local Search) and �!zE denotes the lower bound from Section 3.3.2. Table 3.3 shows the solution quality and 

computation times for different numbers of items, the parameter with most impact. We used a 

Intel quad core, 2.83 GHz processor. We see that integer programming yields a gap to the lower 

bound less than half that of local search on average. This gap clearly decreases with the number 

of items. This is beneficial, because practical instances typically contain hundreds of items. The 

computation times for both methods are small, although the run times of IP increase greatly 

with the problem size. Of the overall computation time, the largest fraction is spent on the 

column generation procedure and hence solving the LP-relaxation (column ‘Comp. time LB’).  

Parameter Values gap IP (%) gap LS (%) 
Comp. time LB 

(min) 

Comp. time IP 

(sec) 

Comp. time LS 

(sec) 

  avg. max. avg. max. avg. max. avg. max. avg. max. 

Number of 

SKUs 

25 0.25 2.16 0.51 3.81 0.15 0.38 0.10 0.64 0.01 0.06 

100 0.02 0.11 0.05 0.35 0.62 1.53 0.14 0.73 0.03 0.73 

400 0.00 0.02 0.00 0.08 2.54 6.25 1.48 10.34 0.50 2.66 

Overall 0.09 2.16 0.19 3.81 1.10 6.25 0.58 10.34 0.18 2.66 

Table 3.3 Solution quality and computation times under integer programming (IP) and local search (LS). 



Chapter 3. Selective emergency shipments 

65 

 

3.5.3.3 The added value of using emergency shipments  

We compare our selective emergency shipment (SES) policy to a one-size-fits-all policy with 

emergency shipments for all items (OSFA ES), and a variant where we use either backordering or 

emergency shipments for an item (OSFA BO+ES). The latter policy differentiates among items, 

but not among customer classes. Backorder clearing is done first-come-first-served. Under one-

size-fits-all, we use a single customer class with maximum waiting time %0&'(. We use OSFA ES 

as a benchmark, since this is common for testing critical level policies (e.g. Kranenburg and Van 

Houtum (2008)). Table 3.4 shows the savings of OSFA BO+ES and our policy compared to OSFA 

ES. We also show the results for different holding cost intervals, because this parameter has 

most influence on the savings. 

Parameter Values savings over OSFA ES (%) 

    OSFA BO+ES  SES 

    Avg. Max.  Avg. Max. 

holding cost 
range interval 

[0.02, 19.98] 7.9 38.9  11.7 45.8 

[0.2 - 199.8] 0.2 2.7  1.2 12.6 

[2 - 1998] 0.1 1.9  0.3 3.0 

Overall   2.7 38.9  4.4 45.8 

Table 3.4 Savings of selective emergency shipments (SES) and OSFA BO+ES over OSFA ES. 

OSFA BO+ES gives average savings of 2.7% over OSFA ES. Selective emergency shipments yield 

additional average savings of 1.7%, resulting in average savings of 4.4% over OSFA ES with a 

maximum of 45.8%. The savings are largest when holding costs are low, because emergency 

shipments are less appealing then: it is cheaper to keep large stocks and reserve emergency 

shipments for premium customer demand only. We also find large savings when waiting time 

restrictions for class 1 demand are loose (7.4% on average). 

Figure 3.5 displays on the left the fraction of items assigned to each shipment strategy for OSFA 

BO+ES and the SES policy. The figure to the right shows the division of items over shipment 

strategies per holding cost interval for our policy. Both SES and OSFA BO+ES have roughly the 

same fraction of items where full backordering is used (� = 0). Clearly, we use the selective 

shipment strategy (� = 1) to limit using expensive emergency shipments for both classes 

(� = 2). On average, � = 1 for 20% of the items. This fraction increases to more than 40% 

when the holding costs are low (see figure on the right).  
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Figure 3.5 Fraction of items per shipment strategy for selective emergency shipments (SES) and OSFA BO + ES 

(left) and fraction of items per holding cost interval for SES (right). 

From Figure 3.5, we thus see that the division of items over shipment strategies varies for 

different holding cost intervals. However, the figure does not tell us for what types of items each 

strategy is used. Therefore, we show the average item holding costs and demand rates per 

shipment strategy in Figure 3.6. Clearly, the selective strategy is mainly used for expensive slow 

movers. Little or no stock is kept of such items, making the shipment mode used crucial for 

meeting waiting times: use emergency shipments for premium clients and backorder non-

premium requests.  

 

Figure 3.6 Overall average holding costs and demand rates per shipment strategy. 

3.5.3.4 Comparison to the critical level policy and a combined policy 

We compare our policy to a critical level policy with emergency shipments (CLP ES). Also, we 

investigate the benefits of combining both policies (CLP+SES). Table 3.5 shows the relative 

savings of the policies compared to OSFA ES. Critical level policies generally outperform 

selective emergency shipments, with average savings of 7.9%. This is caused by the mode of 

differentiation: in critical level policies, premium customers will often obtain a part right away. 

In contrast, customers need to wait at least � }& time units for an emergency shipment. The 

selective emergency shipment policy is also less sensitive to the waiting time restrictions than 
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the critical level policy: the waiting time restriction for class 1 is usually dominant. Then,  

increasing %1&'( has little impact on the solutions found.  

Parameter Values Savings over OSFA ES (%) 

  
SES CLP ES CLP + SES 

Á¤ÂÃÄ − Á¤ÃÅ (days) 

4-1 7.6 5.8 16.1 
8-1 4.5 8.5 14.3 
8-2 4.1 7.5 13.1 

16-2 1.5 9.7 12.1 

Holding cost range 

interval 

[0.02, 19.98] 11.7 0.5 16.2 
[0.2 - 199.8] 1.2 8.3 10.5 

[2 - 1998] 0.3 14.8 15.0 

Æ§ÅoÇ − Æ¥ÅoÇ 
(hours) 

0.5 - 2 1.4 4.4 6.2 
0.5 - 4 1.4 7.6 10.4 
3 - 12 7.4 8.4 16.7 
3 - 24 7.5 11.1 22.4 

Overall 
 

4.4 7.9 13.9 

Table 3.5 Savings of different policies over OSFA ES. 

Selective emergency shipments outperform critical level policies in cases with short regular 

shipment times, low holding costs, and loose waiting time restrictions for class 1 demand. Then, 

it is viable to meet (a part of) the demand through the regular channel instead of expensive 

emergency shipments. Indeed, the fraction of items for which �  is 0 or 1 is relatively high then 

(for the holding costs we can see this in Figure 3.5). Note that selective emergency shipments do 

not outperform CLP ES for the given waiting time restrictions, but this happens if we further 

increase %0&'(. Under the mentioned conditions, the base stock levels with CLP ES tend to be 

high to avoid expensive emergency shipments.  

Obviously, the combined policy works best. Still the additional gain is surprisingly large: it 

exceeds the combined savings of the individual policies. The reason is that under CLP ES, the 

mean waiting time for class 2 customers tends to be considerably below the target; the class 1 

target is usually the bottleneck. By including selective emergency shipments, we are able to 

push the actual performance of low priority customers closer to the target (0.04% instead of 

29% in the experiments with 100 items). 

3.6 Conclusions 

In this chapter, we considered the selective use of emergency shipments as a tool for applying 

service differentiation in spare parts supply. If demand could not be satisfied from on-hand 

stock at the warehouse, it was either backordered or satisfied through an emergency shipment, 

with the chosen shipment mode depending on the item type and customer class. We showed 

how to accurately analyze this system for a single item under various shipment strategies. 
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Furthermore, we developed two heuristics for multi-item optimization that are accurate 

(average gaps to the lower bound well below 1%) and fast. Clearly, greedy approaches are not 

necessary to find good solutions: integer programming with limited columns is simple and works 

well. In an extensive computational experiment, we showed selective emergency shipments 

have clear added value, with average savings of 4.4% compared to one-size-fits-all policies. The 

approach also outperforms critical level policies when holding costs are low, premium waiting 

times are not very tight, and regular shipment times are short. Then, emergency shipments are 

very expensive and should thus be avoided. Differentiation through selective emergency 

shipments is most useful for expensive slow movers, since the approach has most impact when 

little or no stock is kept of an item. Finally, we find large savings (13.9% on average) by jointly 

using critical levels and selective emergency shipments for differentiation in spare parts supply. 

In the next chapter, we expand the selective emergency shipment model to allow for lateral 

transshipments for premium customers. We expect that the addition of selective lateral 

transshipments could be beneficial as a differentiation tool as such transshipments are generally 

both faster and less expensive than emergency shipments.  
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Chapter 4  

Selective lateral transshipments6 

4.1 Introduction 

In the previous chapter, we have shown that selective emergency shipments can be beneficial 

as a tool for applying service differentiation. In this chapter, we extend the selective emergency 

shipment model by also allowing lateral transshipments for premium customers in addition to 

the earlier backordering and emergency shipment options. In practice, a warehouse that is out 

of stock can often obtain the needed item from a neighboring warehouse that still has the item 

on-hand (see e.g. Kranenburg and Van Houtum, 2009). We do not allow this option for non-

premium requests to avoid that such a lateral transshipment depletes stock that could have 

been used for meeting a premium request arriving just a bit later. Demand that cannot be met 

from on-hand stock (either directly or through lateral transshipments) is either backordered or 

satisfied using emergency shipments from a location with infinite supply. Throughout the 

chapter, we use the terms “lateral transshipments” and “transshipments” interchangeably. 

To our knowledge, lateral transshipments have only been considered as a service differentiation 

tool at an operational level, i.e., with stock levels given as input. Furthermore, contributions in 

this area – Jalil (2011) and Tiemessen et al. (2013) – are limited to single-item models. In this 

chapter, in contrast, we consider a multi-item model at a tactical level (i.e. we consider stock 

levels as decision variables) where lateral transshipments may only be used to satisfy premium 

customer requests. The use of lateral transshipments for differentiation likely has significant 

added value: these shipments are generally both faster and less expensive than emergency 

shipments. Hence, if there is added value to using selective emergency shipments for 

differentiation, it will likely be beneficial to use selective transshipments for this purpose as 

well. Furthermore, such a form of stock pooling can also result in lower overall stock levels in 

the supply chain (Paterson et al., 2011). A complication, however, is that the feasibility of a 

lateral transshipment depends on the stock levels at other warehouses, whereas emergency 

shipments are always possible if the central warehouse is assumed to have infinite supply (as is 

the case in most literature as well as in the previous chapter). Hence, we investigate under what 

conditions lateral transshipments are beneficial and how often each shipment option (i.e. lateral 

transshipments, emergency shipments, backordering) is used in a multi-item setting. To do so, 

                                                      
6
 This chapter is based on the working paper “Service differentiation through selective lateral transshipments” by E. 

M. Alvarez, M. C. van der Heijden, I.M.H. Vliegen, and W. H. M. Zijm. 
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we require a single-item building block that has not been considered in literature so far, namely 

an approach to analyze the model when transshipments are used for premium customers only, 

both when unmet demand is backordered and when (some) unmet demand is satisfied using 

emergency shipments. Furthermore, as we found large savings when combining selective 

emergency shipments with critical level policies, we also combine selective emergency 

shipments and selective transshipments with critical level policies. Our detailed contributions 

are: 

1. For a system where multiple warehouses each receive requests from two customer classes, 

we give an analysis approach for a single item under lateral transshipments for premium 

customers. We also extend this approach for the combination with critical levels.  

2. We develop an optimization approach similar to Dantzig-Wolfe decomposition for the 

overall multi-item model and show that this approach is fast and gives good quality 

solutions. Although such an approach has been used for solving similar problems before, 

amongst others in the previous chapter, its application is not straightforward for our 

problem, since we have a large number of control options.  

3. In an extensive computational experiment, we show (i) that there is significant added value 

to using selective transshipments in addition to selective emergency shipments, especially 

in settings with slow moving items and (ii) that the combination of selective transshipments 

and selective emergency shipments is a good alternative to using critical level policies. 

The chapter is structured as follows: we describe the system in Section 4.2 and present in 

Section 4.3 an analysis approach for this system when transshipments are used for premium 

requests. This single-item analysis approach serves as a building block for solving the multi-item 

optimization problem that we address in Section 4.4, where we also present the solution 

approach. We then discuss extensions to a model where a critical level policy is combined with 

selective transshipments and emergency shipments in Section 4.5. In Section 4.6, we discuss our 

extensive computational experiment. Finally, we draw conclusions in Section 4.7.  

4.2 Model 

4.2.1 Model outline 

We consider a multi-item network of multiple local warehouses and a central depot with infinite 

supply. Each warehouse has its own customer base consisting of 2 customer classes, specifically 

premium and non-premium customers. Per customer class, there is a maximum amount of time 

that customers of that class are willing to wait on average for parts. Naturally, the premium 

class has the strictest waiting time requirement. Direct requests at a warehouse (i.e. from its 

own customer base) are met from stock at the warehouse if possible, with a replenishment 
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request being sent to the central depot (i.e. we consider a continuous-time, one-for-one 

replenishment policy).   

A premium customer request that cannot be met from on-hand stock may be satisfied through a 

lateral transshipment from another warehouse. We consider a model where transshipments are 

only used for a subset of warehouses and items, with the selection of the most appropriate 

subset being part of the multi-item optimization problem (Section 4.4). If transshipments of a 

specific item are not allowed at a warehouse, that warehouse can neither request the item at 

another warehouse nor receive transshipment requests. Not allowing transshipments may be 

justified if a warehouse is far away from other warehouses or if an inexpensive fast moving item 

is considered (for which a lateral transshipment is relatively expensive). In contrast, if 

transshipments are allowed, the warehouse can both send and receive transshipment requests. 

On-hand stock is always used to satisfy an incoming transshipment request, i.e. no stock is 

reserved for direct requests. A warehouse issues transshipment requests to other warehouses 

in a predetermined order of the warehouses. Such an order is common in practice and will 

depend on shipment times and costs among warehouses. 

If a request cannot be met either from stock at the direct warehouse or through a lateral 

transshipment, it is either backordered or met using an emergency shipment from the central 

depot. Based on these shipment options, we consider the following three shipment strategies: 

1. Full backordering: Premium and non-premium requests are backordered, with backorders 

cleared first-come-first-served. Premium backorders thus do not receive higher priority. 

Notice that this clearing strategy differs from the priority clearing strategy used in Chapter 3 

for the selective emergency shipments model. 

2. Emergency shipments for premium customers only: we backorder non-premium requests. 

3. Emergency shipments for all customers. 

We do not allow premium requests to be backordered when non-premium requests are met 

through emergency shipments. Notice that the third shipment strategy allows emergency 

shipments for non-premium customers, while cheaper lateral transshipments are not allowed 

for this customer class. Our reason for still considering this strategy lies in the availability of the 

various alternatives: emergency shipments can always be performed due to the infinite capacity 

of the central depot: it will never prevent a premium request arriving a bit later from being 

filled. In contrast, since the feasibility of a lateral transshipment depends on the stock levels at 

other warehouses, the use of this shipment mode for a non-premium request could ensure that 

a premium request arriving at a later moment might not be satisfied. For the non-premium 

class, we therefore only consider emergency shipments as a fast shipment option.  
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The shipment strategy may vary per item and warehouse. In Chapter 3, we have shown that the 

suitability of a shipment strategy depends on the characteristics of the item: full backordering is 

particularly beneficial for relatively inexpensive items with high demand rates, while emergency 

shipments are more suitable for premium requests for expensive slow moving items. As 

demand rates differ per warehouse, the shipment strategy may also vary among warehouses. 

The lateral and emergency shipment times do not have a specific distribution: we only use the 

mean shipment times in our model.  

Figure 4.1 shows a single-item three-warehouse example where transshipments are only 

allowed among warehouses 1 and 2. The shipment strategies differ per warehouse: warehouse 

2 uses full backordering, warehouse 1 uses emergency shipments for premium requests only, 

and warehouse 3 uses emergency shipments for all requests.  

 

Figure 4.1 Example system with 3 warehouses. 

4.2.2 Key assumptions and notation 

We make the following assumptions: 

• All direct requests arrive according to mutually independent Poisson processes.  

• The replenishment lead time to any warehouse is exponentially distributed. This 

assumption facilitates system analysis using continuous-time Markov chains. The system 

performance measures also tend to be insensitive to the lead time distribution, especially 

when emergency shipments are used for both classes (see e.g. Alfredsson and Verrijdt 

(1999) or Chapter 3).  

• The shipment time from any warehouse to a customer is negligible.  

• Lateral transshipments are faster than emergency shipments and also have lower 

shipment costs. As a result, they are preferred over emergency shipments.  
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• Lateral and emergency shipments are sent directly to the customer and do not pass the 

warehouse first.  

• Emergency shipment requests originate from the warehouse that needs the item: a 

second warehouse cannot request the item and then forward it to the warehouse that 

actually needs it. 

We have N warehouses that each receive requests for f items from class 1 (premium) 

customers and class 2 (non-premium) customers. On average, class � customers (� = 1,2) are 

willing to wait at most %R&'( time units for spares. Direct requests for item � (� = 1, . . , f) from 

class � customers at warehouse Y (Y = 1, … , N) occur at rate � RW, with �RW = ∑ � RWy F0  

denoting the total direct demand from class � customers arriving at warehouse Y and �W = �0W + �1W denoting the total direct demand arriving at warehouse Y. The mean 

replenishment lead time of item � to warehouse Y is denoted by � W7}|
, the emergency time by � W}&, and the lateral transshipment time from warehouse 	 by � QWQ'~ (with � QWQ'~ ≤ � W}& ≤� W7}| ∀�, 	, Y). Warehouse Y issues transshipment requests to other warehouses in the order 

specified by ÈW = HÈW"1#, … , ÈW"N − 1#J, with ÈW"�# being the �-th warehouse in the sequence. 

Note that ÈW is the same for all items, as the order will only depend on the shipment distances 

and costs among warehouses. Also, ÈW only indicates the order in which we try to find a 

transshipment source. Whether a warehouse can actually serve as a transshipment source for 

warehouse Y also depends on the decision whether transshipments are allowed from that 

warehouse, and on the available stock at the time of a request. The holding cost parameter ℎ  
denotes the item � unit costs per time unit, identical for all warehouses. Emergency and lateral 

shipments of item � to warehouse Y occur at additional costs ! W}& and ! QWQ'~ over the costs of a 

regular replenishments, with 	 denoting the warehouse sourcing the item. We assume that ! QWQ'~ ≤ ! W}& , ∀	, as this generally holds in practice. 

We have three decision variables for each combination of item � and warehouse Y, i.e. (i) the 

base stock level � W, (ii) the lateral transshipment strategy � W denoting whether transshipments 

are allowed for that item and warehouse (� W then equals 1), and (iii) the shipment strategy � W 

which denotes the highest customer class for which emergency shipments are used. In a setting 

with two customer classes, � W can take on three values: 0 (full backordering), 1 (emergency 

shipments for premium customers only), and 2 (emergency shipments for all customers). On a 

system level, the variables are denoted by vectors É = `� 0, … , � ]a, Ê = `� 0, … , � ]a  and £ = `� 0, … , � ]a. We aggregate all variables in an item policy "É , Ê , £ #. As performance 

measures, we have $% RW"É , Ê , £ #, the expected class-� waiting time for item � at warehouse Y, and �! W"É , Ê , £ #, the total relevant costs for item � at warehouse Y. The relevant costs 

consist of holding costs and extra costs for lateral and emergency shipments over regular 

replenishments.  
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4.3 Analysis 

4.3.1 Approach 

In this section, we focus on the special case where transshipments are allowed among all 

warehouses (i.e. Ê = `1, … ,1a). The analysis under alternative values for Ê  is straightforward: if � W = 0, warehouse Y can be analyzed individually, as it does not send or receive 

transshipments of item �. An exact analysis with continuous-time Markov chains is intractable 

for more than 2 warehouses: we have to keep track of the inventory level at each warehouse 

separately to determine when transshipments are needed and where stocks are available. 

Solving such a Markov chain leads to very large computation times for systems with many 

warehouses. Therefore, we use a decomposition approach in which we analyze each warehouse 

separately and iteratively update the demand rates arising from lateral transshipments. Such an 

approach has led to accurate results for related models (Axsäter (1990), Alfredsson and Verrijdt 

(1999), and Van Wijk et al. (2012)). A key approximation in this decomposition approach is that 

transshipment requests arrive according to Poisson processes with a known rate. Then, each 

warehouse can be analyzed separately, resulting in fill rate estimates. In turn, the fill rates at all 

warehouses determine the rate at which transshipment requests occur. Using a similar 

rationale, we develop an iterative procedure to analyze a system where lateral transshipments 

are only possible for a subset of all customers. We also assume that all warehouses operate 

independently of each other, which allows us to compute, amongst others, the fraction of 

demand met through transshipments as simple products of warehouse fill rates. Obviously, this 

assumption does not hold in reality. We include these dependencies to some extent by 

iteratively updating the transshipment rates among warehouses.  

Section 4.3.2 lists further notation for computing $% RW"É , Ê , £ # and �! W"É , Ê , £ #. Section 

4.3.3 gives the main analysis steps, and Section 4.3.4 details the analysis of a warehouse. 

Section 4.3.5 evaluates the approach performance. We omit suffix �, as we consider a single 

item only. 

4.3.2 Additional notation 

We introduce the notation below, which applies for each warehouse Y and customer class � 

(when applicable). The term ‘demand at warehouse Y’ refers to the direct demand at that 

warehouse.  

• �W: the rate at which transshipment requests arrive. We use �W  to analyze the warehouses 

and estimate the system performance measures.  

• sRW"É, Ê, £#: the fill rate (i.e. the fraction of demand met directly from stock). 
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• VRQW"É, Ê, £#: the fraction of demand met through transshipments from a warehouse 	, with V1QW"É, Ê, £# = 0 (transshipments are not used for non-premium customers). Also, V0QW"É, Ê, £# = 0 when �Q or �W equals 0: then, no transshipments are sourced from 	. 

• ËRW"É, Ê, £#: the fraction of demand met through emergency shipments, with  ËRW"É, Ê, £# =0 if � > �W  (then, emergency shipments are not allowed for that class).  

• $�iRW"É, Ê, £#: the mean backorder level, with $�iRW"É, Ê, £# = 0 if � ≤ �W. 

Using these performance measures, we find $%RW"É, Ê, £# and �!W"É, Ê, £# as follows: 

$%RW"É, Ê, £# = $�iRW"É, Ê, £#/�RW  + ËRW"É, Ê, £#�W}& + t VRQW"É, Ê, £#�QWQ'~
Q∈ÌÍ

 (4.1)  

�!W"É, Ê, £# = ℎ�W + t V0QW"É, Ê, £#�0W!QWQ'~
Q∈ÌÍ

+ t ËRW"É, Ê, £#�RW!W}&1
RF0  (4.2)  

The first term of $%RW"É, Ê, £# arises from backordering (using Little’s formula), whereas the 

second and third term denote the waiting time arising from emergency and lateral 

transshipments. Note that �!W"É, Ê, £# consists of holding costs (which are computed over both 

on-hand stock and items in the pipeline), and the costs for using lateral and emergency 

shipments if applicable.  

4.3.3 Main analysis steps 

Our main analysis steps are: 

1. Initialization: �W = 0, Y = 1. . N , so we initially ignore lateral transshipments. 

2. Warehouse analysis: Given the current value of �W, compute fill rates sRW"É, Ê, £# and 

the expected number of backorders $�iRW"É, Ê, £# for all warehouses Y and classes �. 

3. Update the transshipment rates �W ∀Y given the current values of sRW"É, Ê, £# 

4. Finish: Stop if the change in �W  is smaller than some small  ∀Y. Otherwise, go to step 2. 

We discuss Step 2 in more detail in Section 4.3.4. We update �W in step 3 as follows: let �WQ 
denote the rate at which transshipment requests arrive at warehouse Y from warehouse 	. If Y = ÈQ"�# for any positive integer �, Y receives transshipment requests from 	 when 	 and all 

warehouses ÈQ"1# up to ÈQ"� − 1# are out of stock. Assuming independence among 

warehouses, we find:  

�WQ = �0Q  C1 − sQ"É, Ê, £#D Î v1 − sÌÏ"(#"É, Ê, £#w��0
(F6  (4.3)  

�W = t �WQ Q|W∈ÌÏ
 (4.4)  
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We obtain V0WQ"É, Ê, £# and, if applicable, ËRQ"É, Ê, £# from equations (4.5) and (4.6) 

respectively. We find V0WQ by multiplying the fraction of premium demand at 	 forwarded to Y 

(i.e. �WQ/�0Q) by the probability that this demand can be met from on-hand stock at Y (i.e. sW"É, Ê, £#). Note that ËRQ"É, Ê, £# = 0 when � > �Q, as specified in Section 4.3.2. 

V0WQ"É, Ê, £# = sW"É, Ê, £#�WQ/�0Q (4.5)  sQ"É, Ê, £# + ËRQ"É, Ê, £# + t V0WQ"É, Ê, £#W∈ÌÏ
 = 1 (4.6)  

4.3.4 Detailed analysis of a single warehouse 

We find the fill rate and the expected number of backorders per class from the distribution of 

the number of items in the pipeline to the warehouse by using a continuous time Markov chain. 

For simplicity, we drop index Y and denote r = 1/�7}|. Let S = �0 + �1 + � denote the 

demand rate including transshipment requests when the warehouse has stock on-hand, and Ð"�# the demand rate under shipment strategy � when the warehouse is out of stock. We find 

for Ð"�#:  

• Ð"2# = 0: all demand is lost (i.e. met through lateral or emergency shipments). 

• Ð"1# = �1: premium demand is met through lateral or emergency shipments. 

• Ð"0# = Ñ0�0 + �1: premium requests are backordered when the item cannot be 

obtained elsewhere in the system, which coincides with all warehouses in È being out of 

stock. Hence, the probability Ñ0 of a premium backorder equals ∏ C1 − sQ"É, Ê, £#DQ∈Ì .  

Note that the warehouse never backorders transshipment requests when it is out of stock, i.e., Ð"�# does not contain the transshipment rate �. Figure 4.2 shows the Markov chain depicting 

the number of items in the pipeline. At � or more items in the pipeline, the arrival rate becomes Ð"�#. When � = 0, the states � + �, � ≥ 1, have � backorders in total for both class 1 and class 

2 requests. The exact disaggregation of these backorders over the classes is not required for 

estimating the pipeline distribution, as backorders are cleared first-come-first-served.  

 

Figure 4.2 Markov chain of the number of outstanding orders at the warehouse under shipment strategy £. 

Under full emergency shipments (� = 2), the Markov chain simplifies to an Erlang loss system 

with � servers. Using the notation Ó = S/r, we thus have (see e.g. Gross et al. (2008)):   

s0"É, Ê, £# = s1"É, Ê, £# = 1 − Ó-/�! ∑ ÓÔ/Õ!-ÔF6  (4.7)  
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Under (partial) backordering (� = 0,1), we solve balance equations to find the steady-state 

probabilities ¦� of � outstanding orders. With Ó as before, and Ó0 equal to Ð"�#/r, we find: 

¦6 = ¨ t ÓÔÕ!
-

ÔF6 + u SÐ"�#x- ©�Ö. − t Ó0ÔÕ!
-

ÔF6 ª«�0
 (4.8)  

¦� = Ó·×ØH�,-JÓ0`��-aÙ 1�! ¦6 (4.9)  

s0"É, Ê, £# = s1"É, Ê, £# = t ¦�
-�0
�F6  (4.10)  

$�i"É, Ê, £# = u SÐ"�#x- ¦6 ¨Ó0 ©�Ö. − t Ó0��!  -�0
�F6 ª − � ©�Ö. − t Ó0��!

-
�F6 ª« (4.11)  

Under partial backordering "� = 1#, (4.11) denotes the non-premium mean backorder level $�i1"É, Ê, £#. Under full backordering "� = 0#, (4.11) denotes the total mean backorder level. 

As premium and non-premium backorders occur at rates Ñ0�0 and �1 respectively, we have: 

$�i0"É, Ê, £# = $�i"É, Ê, £#Ñ0�0Ñ0�0 + �1  (4.12)  

$�i1W"É, Ê, £# = $�i"É, Ê, £#�1Ñ0�0 + �1  (4.13)  

4.3.5 Quality of the analysis approach 

We evaluate our method by comparison to simulation for three performance measures: V0W"É, Ê, £# = ∑ V0QW"É, Ê, £#Q∈ÌÍ , and sRW"É, Ê, £# and $%RW"É, Ê, £#, (� = 1,2). We test 32 

problem instances with either 6 or 18 warehouses and transshipments allowed at all 

warehouses (i.e. �W = 1 ∀Y). For the simulation, we used a replication/deletion approach with 

at least 0.3 million requests for both premium and non-premium customers (average values are 

1 million premium and 5 million non-premium requests). Table 4.1 shows the relative deviation 

of our method to simulation. The method is very accurate for slow movers and systems with 

many warehouses. We thus expect the approach to be accurate for practical instances. In 

systems with 6 warehouses and low stock levels (resulting in fill rates below 50%), the estimate 

of the transshipment fraction V0W"É, Ê, £# can be poor. Still, in practice it will not occur that 

stocks of fast movers are low: these items have a high contribution to the overall waiting time. 

Therefore, waiting times for these items should be low. The maximum computation time for an 

instance is 12 milliseconds. Clearly, our approach is accurate and requires little computation 

time. As a result, it will be a suitable building block for solving multi-item problem of the next 

section. We refer to the appendix at the end of this chapter for more details. 
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Settings Average deviation Maximum deviation ÚÛ Ü ÉÛ ÝÛ ÞÛ ßÆ§Û ßÆ¥Û ÝÛ ÞÛ ßÆ§Û ßÆ¥Û 

0.05 6 1 0% 1% 1% 0% 0% 2% 5% 0% 

2 0% 0% 0% 0% 0% 1% 1% 0% 

18 1 0% 0% 0% 0% 0% 0% 0% 0% 

2 0% 0% 0% 0% 0% 1% 1% 1% 

0.5 6 4 2% 8% 4% 1% 6% 20% 9% 5% 

8 0% 1% 1% 0% 0% 1% 1% 1% 

18 4 0% 1% 1% 0% 2% 3% 4% 1% 

8 0% 1% 1% 1% 0% 1% 1% 1% 

Table 4.1 Relative deviations of the analysis approach to simulation. 

4.4 Problem description and optimization 

Problem ")1# minimizes the total system costs �!"É, Ê, £# under restrictions on the mean 

aggregate waiting times per customer class and warehouse. A high waiting time at one 

warehouse thus cannot be compensated by a low waiting time at another warehouse, although 

such a variant (e.g. if a customer can be serviced from multiple warehouses) can be analyzed in 

a similar way. 

")1# min �!"É, Ê, £# = t t �! W"É , Ê , £ #]
WF0

y
 F0    

s.t. t � RW�RW $% RW"É , Ê , £ #y
 F0 ≤ %R&'( � = 1,2, Y = 1, … , N (4.14)  

 � W ∈ �6, � W ∈ H0,1J, � W ∈ H0,1,2J   (4.15)  

As in the selective emergency shipment model of Chapter 3, we use an approach similar to 

Dantzig-Wolfe decomposition to solve ")1#. First, we reformulate the non-linear problem ")1# 

to a linear problem by focusing on item policies as decision variables. The reformulated problem 

becomes to select one item policy for each item such that the system costs are minimized with 

the waiting time requirements still being met. Let �  denote the set of item policies for item �, 

with 
 7 = CÉ "8#, Ê "8#, £ "8#D denoting a single item policy in �  (i.e. 
 7 ∈ � , with 8 = 1,2, … , |� |). Furthermore, let <9:;  be a binary variable indicating whether 
 7 is selected for 

item � (then, <9:; = 1). We then find linear problem ")2#: 

  



Chapter 4. Selective lateral transshipments 

79 

 

")2# min t t t �! W"
 7#<9:;
|E:|
7F0

]
WF0

y
 F0    

s.t. t t � RW�RW $% RW"
 7#<9:;
|E:|
7F0

y
 F0 ≤ %R&'( � = 1,2, Y = 1, … , N (4.16)  

 t <9:; = 1|E:|
7F0  � = 1, … , f (4.17)  

 <9:; ∈ H0,1J � = 1, … , f, 8 = 1, … , |� | (4.18)  

If �  contains all item policies, ")2# and ")1# are equivalent and have the same optimal 

solution. Also, we find a lower bound on the costs by solving the LP-relaxation of (P2). Our 

challenge is the selection of policies to include in �  for each item �, which is far from trivial: 

contrary to the selective emergency shipment model of the previous chapter, each policy 
 7 ∈ �  now refers to a multi-location problem. As we will show, an exact decomposition into 

single location problems is not possible under lateral transshipments. So we face a large set of 

relevant item policies. Furthermore, policy evaluation may take significant time when 

transshipments are allowed. The careful selection of item policies is thus crucial: we should 

select the minimal number of policies such that we still find a (near-) optimal solution to ")2# 

and its LP-relaxation.  

4.4.1 Solving the LP-relaxation 

First, we first construct an initial set of item policies. Subsequently, we iteratively add policies to 

the policy set using column generation until no further interesting policies can be found.  

4.4.1.1 Constructing an initial policy set 

An initial policy set should lead to a feasible solution to the integer problem ")2#. One option to 

find such a set is to select a policy per item � such that $% RW"
 7# ≤ %R&'( for each class � and 

warehouse Y, guaranteeing that ∑ &:mÍàmÍ $% RW"
 7#y F0 ≤ %R&'(. However, that option may lead 

to relatively large stock levels. Instead, we look for a policy over all items simultaneously. We 

use a ‘’biggest-bang-for-the-buck” algorithm, where we satisfy all unmet demand using 

emergency shipments, i.e. � W = 0 and � W = 2. This is justified since we only need a reasonable 

feasible solution as starting point for optimization. In each step of our algorithm, we increase 

the stock level � W by one unit at the item-warehouse combination "�, Y# that leads to the 

greatest added value. We continue until all waiting time restrictions are met. To choose an 

option "�, Y#, we compute the decrease in waiting time relative to the extra investment needed. 

We find á%"É + º W#, the decrease in waiting times for a unit stock increase at "�, Y# (denoted 

by É + º W), as follows:  
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á%"É + º W# = t t �©t � RW�RW $% RWCÉ , Ê ,£ Dy
 F0 − %R&'(ª2]

WF0
1

RF0
− ©t � RW�RW $% RW"É + º W, Ê , £ #y

 F0 − %R&'(ª2� 

(4.19)  

Here `�a2 = maxH0, �J, which ensures that we only consider waiting time reductions above 

their respective thresholds. The extra investment á�!"É + º W# = �!"É + º W# − �!"É # 

follows from (4.2). Note that options "�, Y# may exist where both waiting times and costs 

decrease: a stock increase may lead to lower waiting times and fewer transshipments and 

emergency shipments (resulting in lower shipment costs). Then, we select the option with the 

largest á%"É + º W# among the options with lower costs. Otherwise, we select the option with 

the largest á%"É + º W#/á�!"É + º W#.  

During the procedure, we obtain a new item policy each time we adjust the stock level for one 

item and warehouse. With the exception of dominated policies that have both higher costs and 

higher waiting times at all warehouses than at least one other policy, each obtained item policy 
 7 is included in the policy set � . This means that the initial policy set might contain more than 

one policy for each item: we expect that having many policies in the initial policy set reduces the 

amount of time needed for generating additional policies through column generation. 

4.4.1.2 Finding additional policies through column generation 

Through column generation, we iteratively add the policy with minimal reduced costs to the 

policy set if these costs are negative. We stop once we cannot find further policies with negative 

reduced costs. Let \RW (≤ 0) and �  (≥ 0) denote the shadow price values for constraints (4.16) 

and (4.17) respectively, resulting from solving (P2) for a given set of item policies (see Section 

1.9.2 for details). The reduced costs â "
 # for a policy 
  are now found as follows, with suffix 8 

(i.e. the policy index) omitted for simplicity: 

â "
 # = â "É , Ê , £ # = t ��! W"É , Ê , £ # − t \RW � RW�RW $% RW"É , Ê , £ #1
RF0 �]

WF0 − �  (4.20)  

Notice that it is far from trivial to find the item policy with the lowest reduced costs for an item �. If transshipments are allowed at a warehouse Y, the performance at that warehouse depends 

on the rates at which it sends and receives transshipment requests. Hence, the optimal values 

for � W and � W depend on the values of the decision variables at the other warehouses where 

transshipments are allowed. As a result, we can only guarantee optimality if all warehouses are 

jointly optimized. 

For problems of realistic size, however, optimization over all warehouses jointly requires too 

much time: even for small instances with 10 items and 4 warehouses, the computation times 
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can amount to three days. Instead, we opt for an approximate disaggregation of the overall 

problem into N single warehouse problems. Specifically, we can optimize the decision variable 

values at a warehouse Y separately, if the decision variable values at the other warehouses are 

given. Clearly, the choice of variable values at warehouse Y will influence the optimal values at 

other warehouses. Therefore, we iteratively optimize each warehouse until convergence occurs.  

 

Figure 4.3 Column generation approach to find a near-optimal item policy for a particular item. 

Figure 4.3 shows the main column generation steps for a single item. We omit suffix � in the 

figure and the rest of the section. First, we construct a start (i.e. initial) item policy. This policy 

serves as input for optimizing the decision variables at warehouse 1 a first time (i.e. the decision 

variable values for warehouses 	 > 1 serve as input for optimizing the values for warehouse 1). 

Then, we iteratively optimize decision variable values at a warehouse Y, with the variable values 

of warehouses � ≠ Y fixed to their most recent values. Each time we find a new item policy, we 

verify whether it has the lowest reduced costs so far and store it if this is the case. In an 

iteration, all warehouses in the system are considered. Convergence occurs when the decision 

variable values for all warehouses remain unchanged from one iteration to the next. We now 

give details on steps 1 and 2, with "É∗, Ê∗, £∗# being the best item policy found overall. 

Step 1: finding a start item policy for the column generation procedure. 

We can find a start policy in two extreme ways: either we allow transshipments at all 

warehouses (i.e. �W = 1 ∀Y) or we do not allow them at any warehouse (�W = 0 ∀Y). The 

advantage of the second option is that we can easily find good values for the remaining decision 

variables �W and �W, since each warehouse can be optimized separately. On the other hand, the 

first option will likely result in a more suitable start policy: we expect it to be easiest to move 
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from a policy where transshipments are allowed at all warehouses to one where transshipments 

are only allowed at a subset of warehouses. In contrast, a move from a policy where 

transshipments are not used to one where transshipments are allowed can only occur if it is 

beneficial to transshipment among two or more warehouse (transshipments will not occur if 

they are only allowed at one warehouse). 

These arguments prompt us to combine the options to find a start policy: first, we set �W = 0 

and optimize values for �W and �W ∀Y. Then, we set �W = 1 ∀Y to obtain the start policy. In this 

way, we easily find values for �W  and �W, while still obtaining a start policy where 

transshipments are allowed among all warehouses. Note that the values found for �W  and �W 

result in a valid item policy both when �W = 0 and when �W = 1. Therefore, we analyze the 

system under both settings and store the policy with the lowest reduced costs â"É, Ê, £# as the 

best policy so far "É∗, Ê∗, £∗#. 

Given that �W = 0, we first optimize �W  for each value of �W ∈ H0,1,2J separately. Subsequently, 

we select the combination "�W , �W# leading to the lowest value for â"É, Ê, £#. Given a value for �W, we start with �W = 0. We then iteratively increase �W by one unit until a further increase has 

no benefit. Each time we increase �W, we store the combination "�W , �W# if it leads to the lowest 

value for â"É, Ê, £# so far (denoted by â& �"É, Ê, £#). A further increase of �W  has no benefit 

once ℎ"∑ �� + 1]�F0 # − � ≥ â& �"É, Ê, £#. Then, the minimal reduced costs for �W + 1 

(consisting of the system holding costs minus the item shadow price) already exceed the best 

reduced costs found so far. Note that the actual reduced costs for �W + 1 will be larger than that 

minimum value, as we ignore the shipment and waiting time costs. 

Step 2: optimizing decision variable values at warehouse Û. 

Our aim is to find the values for �W, �W and �W that minimize the reduced costs â"É, Ê, £# in the 

entire system. We do so, because the decision variable values at warehouse Y influence the 

service levels at all warehouses. This influence can be significant: in particular, if stock is mainly 

(or even only) kept at warehouse Y, the value of �W is crucial, since it influences whether other 

warehouses have access to this stock.  

We first optimize the decision variable values at Y for each value of �W separately. We then 

select the combination "�W , �W , �W# that minimizes â"É, Ê, £#. Note that when �W = 0, the 

optimal values for �W and �W are the same as those found when looking for the start item policy 

(step 1), as the warehouse is not influenced by transshipment requests from other warehouses. 

When �W = 1, we use the approach described in step 1 to find optimal values for �W and �W.  

Given values for �W, �W and �W, we have two options for estimating â"É, Ê, £#. The first option is 

to use the full analysis approach of Section 4.3. This option gives the most accurate estimate of â"É, Ê, £#, but it is also time-consuming, especially since we need to analyze the system for 
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various combinations of �W, �W and �W. The second option is to use a partial analysis approach 

for optimization – where we only analyze warehouse Y (as in Section 4.3.4) and update the 

estimates of VRQ"É, Ê, £# and ËRQ"É, Ê, £# for the other warehouses 	 ≠ Y in the system through 

equations (4.5) and (4.6) – and subsequently use the full analysis approach to estimate â"É, Ê, £#. This option is much faster than the first option (we now only need to analyze one 

warehouse at a time during optimization), while it still gives sufficiently good solutions, as we 

will show in Section 4.4.1.3. Furthermore, we still find an accurate value for â"É, Ê, £# for the 

chosen values of �W, �W and �W. Therefore, we use this option for optimizing the decision 

variables values and estimating â"É, Ê, £#. 

After optimization, we determine whether the newfound policy is the best so far (i.e., step 3) 

and store it if this is the case.  

4.4.1.3 Quality of the obtained lower bound 

We cannot guarantee that our column generation procedure always finds the item policy with 

the lowest reduced costs. Hence, we cannot ensure that we find the true optimal solution to the 

LP-relaxation of ")2#. Therefore, we compare the lower bound found with our column 

generation procedure to the lower bound when using an optimal column generation approach 

based on complete enumeration. As the latter approach is time-consuming, we only test small 

problem instances. We tested 128 problem instances, each with 5 or 10 items, and 2 or 4 

warehouses. The remaining parameter values have been marked by an asterisk in Table 4.3 

(Section 4.6.1). 

ã Ü 
Relative deviation to true LB 

Average Maximum 

5 
2 0.24% 2.23% 

4 0.13% 1.23% 

10 
2 0.24% 2.29% 

4 0.06% 0.46% 

Table 4.2 Relative deviation to the true lower bound. 

From Table 4.2, we see that our approach indeed does not always find the true lower bound. 

Still, the deviation is at most 2.29%. Also, the deviations decrease in the number of warehouses 

and items, with the deviation being at most 0.46% for instances with 10 items and 4 

warehouses. We thus expect the lower bound estimate to be accurate for larger instances that 

occur in practice. 

4.4.2 Finding a near-optimal integer solution 

The solution to the LP-relaxation might be fractional, with a combination of item policies being 

selected for certain items. Therefore, we need an approach to find a near-optimal solution to 
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the integer problem ")2#. A simple option would be the intelligent rounding of the fractional 

values <9:;  of the LP-relaxation solution. However, such rounding will not be trivial, as we can 

have many items for which multiple policies are used: ")2# has 2N + f constraints, leading to 2N + f item policies 
 7 being basis variables (i.e. where <9:; > 0#. For each item, at least one 

policy will be selected. We thus can have up to 2N items for which multiple policies are 

selected. Also, it is generally known that intelligent rounding does not give good results in 0-1 

(i.e., binary) integer programming. Furthermore, even if rounding is used to find a starting point 

for a local search procedure, the resulting solution is usually inferior to that obtained when 

solving the integer problem using linear optimization software such as CPLEX, as shown in the 

previous chapter. Therefore, we also solve ")2# using CPLEX. 

The policy set used for solving the LP-relaxation serves as a starting point for the integer 

problem policy set, as this set has worked well in the previous chapter. From the LP-relaxation 

set, we remove all dominated policies (i.e. policies with both higher costs and waiting times 

than at least one other policy) and all policies 
  where 
&:mÍàmÍ $% RW"
 7# exceeds %R&'( for at 

least one item � and warehouse Y (the aggregate waiting time ∑ ∑ &:mÍàmÍ $% RW"
 7#<9:;|E:|7F0y F0  

then also exceeds %R&'(). 

Still, computation times remain extensive under this smaller policy set and can amount to 

several hours. To decrease computation times, we consider two options, namely (i) further 

reducing the number of item policies per item or (ii) setting a limit on the time for CPLEX to find 

a solution. We choose for option (ii) because computation times remained large under option 

(i), irrespective of the criterion used for removing item policies (e.g. when reduced costs of a 

policy exceed a certain threshold). Also, the solutions found could be very poor, such as a gap to 

the lower bound of 14%. Option (ii) outperformed option (i) both in solution quality and 

computation times. The reason is that CPLEX often finds a good solution in the first few minutes, 

with improvements being minor from then on. Most time is spent on evaluating options that 

turn out to be infeasible. In an experiment with 80 problem instances – with 20 to 50 items and 

10 to 20 warehouses – we considered time limits from 15 to 60 minutes. We found that a limit 

of 15 minutes already works well, with an average gap to the lower bound of 0.85%. Further 

improvements in quality were negligible under larger time limits (e.g., under a limit of 60 

minutes the average gap reduced to 0.84%).  

4.5 Extension to a model with critical levels 

We now extend the model of Section 4.2 to include positive critical levels, i.e. where an amount 

of stock can be reserved for premium requests (either direct or transshipment requests). We let ! W denote the critical level for item � at warehouse Y, with � = `! 0, … , ! ]a denoting the 

system critical levels. As before, premium requests may be met through transshipments when 
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the direct warehouse is out of stock. However, warehouses with positive critical levels must 

always use emergency shipments to satisfy all (premium and non-premium) requests that 

cannot be satisfied through stock or transshipments. In other words: � W = 2 if ! W > 0. We 

choose this model for its simplicity: as we shall see, the combination of critical levels with 

emergency shipments leads to a simple analysis of a warehouse. Also, it remains a realistic 

model: critical levels are mainly beneficial for expensive slow movers, as found both in the 

previous chapter and by Kranenburg and Van Houtum (2008). For such items, all unmet demand 

is generally satisfied through emergency shipments.  

We can easily extend the analysis and optimization approaches for the combined model. In the 

analysis approach, the main steps and the computation of the transshipment rates (Section 

4.3.3) remain the same. We must only be able to analyze a single warehouse under a critical 

level policy with emergency shipments. For the optimization procedure, we require a slight 

modification to the column generation method. Specifically, we must be able to optimize 

decision variable values – including the critical level – at a single warehouse. We discuss the 

warehouse analysis in Section 4.5.1 and the optimization in Section 4.5.2. For simplicity, suffixes � and Y are omitted. 

4.5.1 Warehouse analysis 

Figure 4.4 shows the Markov chain of the number of outstanding orders, with S and r as in 

Section 4.3.4. Non-premium demand is lost once � − ! orders or more are outstanding 

(equivalent to having at most ! items on-hand). This Markov chain is similar to that of 

Kranenburg and Van Houtum (2008) (the difference is that they do not consider transshipments, 

with � thus being zero). 

 

Figure 4.4 Markov chain of the pipeline at the local warehouse under a critical level policy with emergency 

shipments. 

The steady-state probabilities ¦� and fill rate values sR (� = 1,2) follow directly from the balance 

equations. We refer to Kranenburg and Van Houtum (2008) for further details. 

4.5.2 Warehouse optimization 

Optimization occurs in a way similar to the procedure in Section 4.4.1.2, except that we must 

also optimize ! for any combination "�, �, �# when � = 2. Given values for � and �, and � = 2, 

we find an optimal value for ! as follows: starting with ! = 0, we iteratively increase ! by one 

unit, with the value leading to the lowest â"É, Ê, £, �# being stored. We keep increasing ! until 

either (i) ! = � (we can reserve at most the base stock level) or (ii) s0"É, Ê, £, �# ≥ 1 − ³, with 
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³ a specified tolerance. As ! increases, the service level at premium customers improves 

(leading to lower reduced costs for those customers) at the expense of non-premium customers 

(for whom we find higher reduced costs). Overall, â"É, Ê, £, �# will thus first decrease and then 

increase. Still, we are unable to prove convexity of â"É, Ê, £, �# in !. However, once s0"É, Ê, £, �# is close to 1, we can be certain that the reduced costs for premium customers will 

barely decrease further. 

As before (see step 2 of Section 4.4.1.2), we have two options for estimating â"É, Ê, £, �# for 

given values of �, �, � and !, i.e. (i) a more accurate but time-consuming option of analyzing 

the entire system, and (ii) a faster but less accurate option of analyzing a single warehouse and 

only updating the values of VR"É, Ê, £# and ËR"É, Ê, £# for the other warehouses. We use the 

first option for the model with critical levels only. This model serves as a benchmark for 

evaluating the model with lateral transshipments and emergency shipments as the only 

differentiation tools. The first evaluation option results in a stronger benchmark, as it generally 

gives better solutions.  

4.6 Computational experiment 

In an extensive computational experiment, we investigate (i) the performance of our 

optimization approach in terms of solution quality and computation time, (ii) the added value of 

the selective transshipment approach by comparing it to alternative differentiation approaches, 

and (iii) the suitability of the various shipment and transshipment strategies.  

4.6.1 Experiment design 

We construct 1024 problem instances, with � QWQ'~ always equal to 1 day and ! W}& equal to 1000. 

Table 4.3 gives the other parameter values. The asterisks specify the values considered when 

evaluating the quality of our lower bound estimate (Section 4.4.1.3). Shipment times and costs 

are the same for all items and warehouses in a problem instance, with the lateral times and 

costs equal for any warehouse pair. Using a uniform distribution, the holding costs ℎ  are 

randomly drawn on the specified interval. Below, we detail how we obtain values for demand 

rates � RW.   
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 Parameter Value 

1 f  20, 50 

2 N  10, 20 

3 � W7}|
 (days) 8*, 16* 

4 � W}& (days) 2*, 4* 

5 `%0&'(; %1&'(a (hours) `0.5; 2a*, `3; 24a*  

6 ! QWQ'~  100*, 500 

7 Avg. � W – interval (p. day) `0.002; 0.05a*,`0.002; 0.5a*  

8 Avg. fraction premium q8��L 0.2*, 0.5 

9 ℎ  – interval (p. day) `0.1; 10a*,`0.1; 50a*  

Table 4.3 Tested parameter values. 

Our demand rates � RW  should differ among warehouses and items, with the overall fraction of 

premium demand in the system equal to q8��L. We find � RW  in three steps: first, (1) we draw a 

value on the � W–interval (using a uniform distribution) to obtain the average demand rate for 

item � at one warehouse. By multiplying this value by N we find the total system demand rate � . Then, (2) we find the total premium demand in the system � L by multiplying �  by q8��L, 

with � � denoting the remaining non-premium demand. Finally, (3) we disaggregate � L and � � 

over the warehouses to obtain � RW. Each warehouse is assigned a fraction of � L and � � (using 

a normal distribution), with normalization ensuring that ∑ � 0W]WF0 = � L and ∑ � 1W]WF0 = � �. 

The parameter values used by Kranenburg and Van Houtum (2008, 2009) formed the basis for 

our values, as their values are based on practice. We consider items that have both high and low 

values, and high and low demand rates. The annual demand rates vary between 0.7 units and 

183 units. In practice, an item’s annual holding cost is a fraction (roughly 25%) of its value. In 

this study, we thus consider item values between 146 and 73000 euro’s.  

For simplicity, a warehouse Y sends transshipment requests to other warehouses in the same 

order in all problem instances: ÈW = HY + 1, Y + 2, … , N, 1,2, … J. So, if warehouse Y is out of 

stock, it first requests an item at warehouse Y + 1, then at warehouse Y + 2, etc. We consider 

this order to balance transshipment streams among warehouses such that no warehouse is 

always the first to receive transshipment requests from the other warehouses. In practice, the 

sequence ÈW will depend on the shipment costs and distances among the warehouses. 

For each combination of parameters in Table 4.3, we construct 2 sets of item demand rates and 

holding costs to ensure that our results are not dependent on the specific values of one sample. 

Combined with 2ä = 512 possible parameter combinations, we thus have 1024 instances in 

total. 
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4.6.2 Performance of the optimization procedure 

Table 4.4 shows the solution quality – expressed as a relative gap to the lower bound estimate – 

and computation times of the optimization procedure. We used a Dell optiplex 760 with Intel 

quad core 2.83 GHz processor. Overall, the relative gap is 0.8% on average, with a maximum of 

5.5%. The average and maximum gap decrease greatly as the number of items increases. We 

therefore expect the approach to work very well in realistic settings with many items. The 

average instance computation time is 12 minutes, with the maximum being 34 minutes. The 

computation time mainly increases with the number of items and warehouses in an instance. 

Parameter Values 
Gap to lower bound estimate (%) Computation time (min.) 

Average Maximum Average Maximum  

f 
20 1.3 5.5 7 21 

50 0.3 1.3 17 34 

N 
10 0.6 2.9 7 16 

20 1.0 5.5 16 34 

Grand Total 0.8 5.5 12 34 

Table 4.4 Solution quality and computation times of optimization procedure. 

4.6.3 Comparison to alternative differentiation approaches 

We compare the selective transshipment model (ST_SES) to two alternatives:  

1. A selective emergency shipment model (SES), which is the special case of ST_SES with 

transshipments not allowed for any item or warehouse 

2. The selective transshipment model with critical levels  (CLP_ST_SES) of Section 4.5.  

The added value of both ST_SES and CLP_ST_SES is expressed in terms of relative cost savings to 

SES, shown in Table 4.5. Notice that ST_SES has significant savings compared to SES: the average 

savings are 14% and can amount up to 34%. The savings are particularly large for instances with 

many slow moving items; for fast movers, lateral transshipments are not beneficial, as we will 

see in Section 4.6.4. Savings are also large when emergency shipment times are large and 

waiting times are not very strict, although the influence of these parameters is mainly large in 

settings with expensive slow movers.  
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Parameter Values 
Average savings over SES Maximum savings over SES 

ST_SES CLP_ST_SES ST_SES CLP_ST_SES 

� W}& 
2 12% 12% 28% 28% 

4 17% 17% 34% 35% 

`%0&'(; %1&'(a `0.5; 2a   11% 11% 19% 19% `3; 24a  18% 19% 34% 35% 

Max. � W 
0.05 19% 20% 34% 35% 

0.5 9% 10% 20% 20% 

Grand Total 14% 15% 34% 35% 

Table 4.5 Relative savings of ST_SES and CLP_ST_SES over SES. 

The savings of CLP_ST_SES are similar to those of ST_SES. Clearly, there is little benefit to also 

allowing stock reservation for premium customers. The reason for this is that ST_SES is already 

able to differentiate very effectively: the aggregate waiting times per class � are close to their 

thresholds %R&'(. Adding critical levels therefore does not lead to extra savings.  

4.6.4 Suitability of shipment and transshipment strategies 

For each combination "� W, � W#, Figure 4.5 shows the overall fraction of items and warehouses 

for which that combination is used. Clearly, lateral supply is very suitable for meeting premium 

requests: overall, transshipments are allowed at 96% of all item-warehouse combinations. For 

the remaining 4% of combinations where transshipments are not allowed, we always use full 

backordering. This is logical: if it is not beneficial to use lateral transshipments for premium 

customers, it will also not be beneficial to use more expensive (and slower) emergency 

shipments for this class (or thus for the non-premium class). We can thus limit the combinations "� W , � W# that we should consider during optimization. The instances where lateral 

transshipments are not beneficial have many inexpensive fast moving items, high transshipment 

costs and loose waiting time restrictions, making transshipments expensive and unnecessary.  

 

Figure 4.5 The fraction of items and warehouses using a particular (trans-)shipment combination. 
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Overall, full backordering (� = 0) is the most frequently used shipment strategy (see Figure 

4.5). Still, the added value of each shipment strategy depends heavily on the shipment times 

and type of item, as shown in Figure 4.6. Full backordering (� = 0) is especially beneficial when 

emergency shipments are slow relative to regular shipments, and when items are mostly cheap 

fast movers. Then, that strategy is used for roughly 85% of all items and warehouses. This 

coincides with the findings of the previous chapter. Clearly, it is beneficial to consider 

backordering in addition to emergency shipments, even though it is common in both literature 

and business for emergency shipments to be the only shipment mode. 

 

Figure 4.6 The influence of shipment times (left) and item type (right) on the use of various shipment strategies. 

Figure 4.7 shows for various problem instances how the strategies "� W , � W# are distributed 

over the items in each instance. We focus on instances with an � W-interval of `0.002; 0.5a and 

a holding cost interval of `0.1; 50a; the results are similar for other parameter values. As 

expected, neither lateral transshipments nor emergency shipments are used for inexpensive 

fast movers, with both transshipments and (partial) emergency shipments used for expensive 

slow movers. 

 

Figure 4.7 Item characteristics per (trans-)shipment strategy. 
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4.7 Conclusions  

We considered a system with two customer classes where lateral transshipments and 

emergency shipments are both used selectively for service differentiation purposes. For a 

single-item setting, we developed an analysis approach when selective transshipments may only 

be used for premium requests. We also developed an approach similar to Dantzig-Wolfe 

decomposition to optimize the multi-item system under class-specific waiting time restrictions. 

Key conclusions are: 

• Our analysis approach is accurate and fast.  

• Our multi-item solution approach gives near-optimal solutions in little computation time.  

• Selective lateral transshipments lead to significant cost savings when combined with 

selective emergency shipments. The savings are 14% on average and can amount to 

34%. The savings can be particularly large (19% on average) if we have many expensive 

slow movers. 

• Using critical levels besides selective (trans-)shipments does not lead to significant extra 

gains. Clearly, the combination of selective transshipments and emergency shipments is 

a good alternative to critical level policies. Furthermore, the former combination is also 

easier to implement in practice.  

• Backordering should also be considered as a shipment option in spare parts settings. This 

is in contrast to the practice of always using emergency shipments for unmet demand. 

From the findings in this and the previous chapter, our conjecture is that significant cost savings 

can be obtained by using any two differentiation tools jointly, such as critical levels and selective 

emergency shipments (Chapter 3) or selective transshipments and selective emergency 

shipments. Combining three differentiation tools does not lead to additional benefits, but 

clearly “two out of three (options) is not bad”. This flexibility to choose differentiation tools 

allows service providers to select those tools that are easiest to implement (with critical level 

policies possibly not being used in favor of options with fewer practical drawbacks).  

So far, we have applied service differentiation by considering multiple shipment options (i.e. 

lateral transshipments, emergency shipments, and backordering). In the subsequent chapters, 

we consider an alternative differentiation tool for spare parts supply, namely the use of 

dedicated customer stocks. In Chapter 5, we first present an analysis approach for a two-

echelon system under lost sales. We require such an approach to analyze a system under 

dedicated stocks with emergency shipments. The analysis approach of Chapter 5 serves as a 

building block in Chapter 6, where we discuss multi-item optimization under dedicated stocks. 

There, we also evaluate the added value of using dedicated stocks for service differentiation.  
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Appendix: detailed performance analysis approach 

We now give details on the comparison of our analysis approach to simulation from Section 

4.3.5. Table A1 shows the parameter values tested. In all instances, the shipment strategies are 

spread evenly over the warehouses, i.e. one third of all warehouses uses full backordering, one 

third uses emergency shipments for premium customers only, etc. The demand rates and 

shipment times are the same at all warehouses, with a fraction q8��L of demand coming from 

premium customers. We let large demand rates coincide with large stock levels. 

Parameter Values N  6; 18 ��W7}|, �QWQ'~, �W}&�  [8,1,2] 

Premium fraction q8��L   0.1; 0.2; 0.3; 0.5 �W  0.05  0.5 �W  1; 2  4; 8 

Table A1 Parameter values considered for testing the analysis approach. 

Table A2 shows the simulated and computed values for various performance measures, 

computed as averages over all warehouses (e.g. s'å| shows the average warehouse fill rate). 
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Settings  s'å|  V'å| $%0�'å| $%1�'å|  

Case Ü ÚÛ æÂoçè É Sim Analytic Sim Analytic Sim Analytic Sim Analytic 

1 6 0.05 0.1 1 0.68 0.68 0.32 0.32 0.32 0.32 1.14 1.14 

2 6 0.05 0.1 2 0.94 0.94 0.06 0.06 0.06 0.06 0.15 0.15 

3 6 0.05 0.2 1 0.67 0.67 0.33 0.33 0.33 0.33 1.16 1.16 

4 6 0.05 0.2 2 0.94 0.94 0.06 0.06 0.06 0.06 0.15 0.15 

5 6 0.05 0.3 1 0.66 0.66 0.33 0.34 0.34 0.34 1.18 1.18 

6 6 0.05 0.3 2 0.94 0.94 0.06 0.06 0.06 0.06 0.15 0.15 

7 6 0.05 0.5 1 0.65 0.65 0.34 0.35 0.37 0.36 1.21 1.22 

8 6 0.05 0.5 2 0.94 0.94 0.06 0.06 0.06 0.06 0.15 0.15 

9 6 0.5 0.1 4 0.50 0.50 0.48 0.48 0.52 0.51 1.23 1.23 

10 6 0.5 0.1 8 0.96 0.96 0.04 0.04 0.04 0.04 0.06 0.06 

11 6 0.5 0.2 4 0.49 0.48 0.48 0.50 0.56 0.54 1.22 1.22 

12 6 0.5 0.2 8 0.96 0.96 0.04 0.04 0.04 0.04 0.06 0.06 

13 6 0.5 0.3 4 0.47 0.46 0.48 0.51 0.59 0.56 1.20 1.21 

14 6 0.5 0.3 8 0.96 0.96 0.04 0.04 0.04 0.04 0.06 0.06 

15 6 0.5 0.5 4 0.44 0.42 0.47 0.55 0.67 0.62 1.19 1.22 

16 6 0.5 0.5 8 0.96 0.96 0.04 0.04 0.04 0.04 0.05 0.05 

17 18 0.05 0.1 1 0.68 0.68 0.32 0.32 0.32 0.32 1.14 1.14 

18 18 0.05 0.1 2 0.94 0.94 0.06 0.06 0.06 0.06 0.15 0.15 

19 18 0.05 0.2 1 0.67 0.67 0.33 0.33 0.33 0.33 1.16 1.16 

20 18 0.05 0.2 2 0.94 0.94 0.06 0.06 0.06 0.06 0.15 0.15 

21 18 0.05 0.3 1 0.66 0.66 0.34 0.34 0.34 0.34 1.18 1.18 

22 18 0.05 0.3 2 0.94 0.94 0.06 0.06 0.06 0.06 0.15 0.15 

23 18 0.05 0.5 1 0.65 0.65 0.35 0.35 0.35 0.35 1.22 1.22 

24 18 0.05 0.5 2 0.94 0.94 0.06 0.06 0.06 0.06 0.15 0.15 

25 18 0.5 0.1 4 0.50 0.50 0.50 0.50 0.50 0.50 1.23 1.23 

26 18 0.5 0.1 8 0.96 0.96 0.04 0.04 0.04 0.04 0.06 0.06 

27 18 0.5 0.2 4 0.48 0.48 0.52 0.52 0.52 0.52 1.23 1.22 

28 18 0.5 0.2 8 0.96 0.96 0.04 0.04 0.04 0.04 0.06 0.06 

29 18 0.5 0.3 4 0.46 0.46 0.54 0.54 0.55 0.54 1.23 1.22 

30 18 0.5 0.3 8 0.96 0.96 0.04 0.04 0.04 0.04 0.06 0.06 

31 18 0.5 0.5 4 0.40 0.40 0.59 0.60 0.62 0.60 1.25 1.25 

32 18 0.5 0.5 8 0.96 0.96 0.04 0.04 0.04 0.04 0.05 0.05 

Table A2 Detailed comparison between simulation and our analysis approach. 
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Chapter 5  

Analysis of a two-echelon system 

under lost sales7 

5.1 Introduction 

In Section 1.8.1, we mentioned that no suitable models yet exist to accurately analyze a two-

echelon model under lost sales. However, such a model is a necessary building block to 

determine whether dedicated customer stocks are an effective differentiation tool. Specifically, 

when stock can be kept at customer sites in addition to stock at a central stock point, we get an 

additional echelon level in the supply chain. By developing an analysis approach for this system, 

we satisfy our fourth research objective. Subsequently, we use this approach in Chapter 6 to 

determine the effectiveness of dedicated stocks as a differentiation tool. 

We consider a single-item two-echelon spare parts supply system, consisting of a central depot 

and multiple local warehouses. Demand arrives at each local warehouse according to a Poisson 

process. Each location uses a continuous review, one-for-one replenishment policy for inventory 

control. Demand that cannot be met from stock is served using an emergency shipment from an 

external source with infinite supply and is thus lost to the system. As discussed in Section 1.7.1, 

the analysis of this lost-sales inventory system is more complex than its counterpart under full 

backordering. In particular, the analysis of the central depot is complex, since (i) the order 

process is not Poisson, and (ii) the order arrival rate depends on the inventory states of the 

warehouses: warehouses only generate replenishment orders if they have stock on hand.  

In the literature, solutions have been found for specific cases. Andersson and Melchiors (2001) 

consider a model where demand at a local warehouse is lost if the warehouse is out of stock, 

even if the depot still has stock on hand. They approximate the arrival process at the depot by a 

Poisson distribution with a rate that depends on the fill rates at the warehouses. Given these fill 

rates, they compute the mean waiting time for replenishment orders at the depot. This waiting 

time is input for the computation of the fill rates at the warehouses. This yields an iterative 

procedure that gives reasonably accurate results in general, but often does not converge when 

a lot of stock is kept at the central depot, with little stock kept locally. Such a setting is very 

                                                      
7
 This chapter is based on the working paper “On two-echelon inventory systems with Poisson demand and lost 

sales” by E. M. Alvarez and M. C. van der Heijden. 
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common for expensive slow movers to benefit from risk pooling. Seifbarghy and Jokar (2006) 

consider a model similar to that of Andersson and Melchiors under an "�, �# policy, i.e. orders 

are placed in batches of size � whenever the inventory position reaches a level �. The analysis 

approach is similar as well. The authors only consider cases with identical warehouses and limit 

their experiments to settings with high service levels (fill rates of 90% or more). Alternatively, 

Hill et al. (2007) explicitly use arrival rates that depend on the number of outstanding orders at 

the depot. They assume that (i) each local warehouse may only have one outstanding order at 

any time, and (ii) the shipment time from depot to warehouse is at least the central depot lead 

time. The second assumption is particularly restrictive, since upstream lead times tend to 

exceed downstream lead times in practice. 

The papers mentioned above use rather simple approximations for the analysis of the central 

depot, ignoring the fact that demand is not Poisson distributed there, and that the demand rate 

at the depot depends on the inventory levels at all warehouses. In this paper, we develop 

improved approximations for the service levels using a more accurate analysis of the order 

arrival rates and the pipeline at the central depot. Although we also assume that demand 

arrives at the depot according to Poisson processes, we find that the accuracy of our 

approximations is high and does not depend on the stock levels in the system. As a result, our 

approach works well for both high and low service levels. We typically encounter both in the 

optimization of multi-item spare part inventory systems. Furthermore, the approach can handle 

settings with non-identical local warehouses and no assumptions are made on the maximum 

number of outstanding orders.  

To facilitate the analysis, we make one key assumption on the product flows that seems very 

reasonable from a practical perspective: demand at a local warehouse is only lost if it cannot be 

met from local stock, central stock or any replenishment order in transit between the depot and 

the local warehouse. The logic is that a shipment from the depot to any warehouse is generally 

faster than an emergency shipment from a (remote) external supplier. Therefore, the latter 

option should not be used if the depot still has stock on hand. This setting also applies in the 

chapter on dedicated stocks: there, we assume that all customers are in the vicinity of the stock 

point, making a regular shipment to any customer faster than an emergency shipment. 

For each warehouse, we give approximations for (i) the fraction of demand met using the two-

echelon system and (ii) the related mean waiting time. The remaining demand is met through 

emergency supply and faces the related supply time as delay. Then, we can compute both the 

overall expected downtime due to spare parts unavailability and the system costs for the item 

being considered. Both indicators are key performance measures in the multi item problem of 

the next chapter. 
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In the next section we define our model and give our analysis. We present the results from 

numerical experiments in Section 5.3, and give our conclusions in Section 5.4.  

5.2 Model 

5.2.1 Notation and assumptions 

Consider a single-item two-echelon network consisting of a central depot and N local 

warehouses (Figure 5.1). We use index 0 for the central depot and indices 1 … N for the local 

warehouses. Demand occurs at local warehouse Y according to a Poisson process with rate �W. 

The inventory at stock point Y, Y = 0, … , N, is controlled using an "�W − 1, �W# installation stock 

policy. The transportation time between the central depot and local warehouse Y is 

deterministic and equal to �W. The replenishment lead time to the central depot is assumed to 

be exponentially distributed with mean �6, which facilitates an analysis using Markov chains. 

Also, the performance of such lost sales models is not very sensitive to the lead time 

distribution, see Alfredsson and Verrijdt (1999). 

 

Figure 5.1 A graphical representation of the supply system. 

Demand arriving at local warehouse Y is served through the two-echelon network if an item is 

available at the local warehouse, the central depot or in the transport pipeline between the 

two. Otherwise, the demand is satisfied using an external emergency source at additional costs. 

The emergency lead time has an arbitrary probability distribution with mean �W. We consider 

the setting where the depot is located close to the local warehouses – which may occur in 

practice when the local warehouses represent car stocks or stock points at customer sites –

whereas the distance from the external source to the depot is much longer. Therefore, we 

assume that �W < �W < �W + �6 ∀Y: as emergency shipments occur from the external source, 

the emergency shipment time will exceed the shipment time from the depot. Incidentally, even 

if �W > �W, it may still be beneficial to only use emergency shipments once the depot is out of 

stock to limit expensive emergency shipment costs. We use the common assumption that the 

external emergency source has infinite capacity.  



5.2. Model 

98 

 

Our performance indicators are the fraction of warehouse Y demand that is satisfied through 

the regular channel, VW, and the expected waiting time for demand satisfied through the regular 

channel $`%Wa (Y = 1 … N). These performance indicators enable us to evaluate:  

• the total relevant costs per year as ℎ6�6 + ∑ HℎW�W + !W"1 − VW#�WJ]WF0 , where ℎW denotes 

the unit holding costs per year at stock point Y and !W the additional emergency shipment 

costs to local warehouse Y (above the costs of regular supply); 

• the downtime waiting for parts ��%)W at local warehouse Y as VW$`%Wa + "1 −  VW#�W . 

5.2.2 Analysis 

We find $`%Wa by noting that waiting time when using the regular channel only arises when 

demand is backordered while waiting for a part that is either on stock at the depot, or in transit 

between depot and warehouse and still unassigned to other demand. Hence, $`%Wa follows 

from Little’s Law, i.e. $`%Wa = $`�iWa/VW�W, with �iW denoting the number of items 

backordered at warehouse Y. 

In turn, we find both $`�iWa and VW by analyzing the central depot, specifically the distribution 

of the number of backorders at the depot destined for local warehouse Y, which we denote by �i6W. This is the critical and novel part of our analysis. Depot backorders occur when a local 

warehouse sends a replenishment request to the depot when the depot is out of stock. The 

distribution of �i6W allows us to determine the distribution of the number of outstanding orders 

(i.e. the pipeline) at warehouse Y, which in turn allows us to determine the distribution of �iW. 

From the distribution of the depot backorders �i6W, we also directly obtain VW: once the depot 

is out of stock, at most �W  additional demands can still be met through the regular channel 

(either directly from warehouse stock or from items in the transport pipeline). Hence, once we 

have �W  depot backorders for warehouse Y, further demand at that warehouse is lost. We thus 

find VW as follows: 

VW = PrH�i6W < �WJ = 1 − PrH�i6W = �WJ      (5.1) 

We first show how to find the distribution of �i6W. Then, we show how to find $`�iWa. For the 

analysis, we also need )fW, the number of outstanding orders at each location (Y = 0, … , N#. 

5.2.2.1 Distribution of �i6W , the number of backorders at the central depot for warehouse Y 

We find distribution of �i6W by conditioning on the number of outstanding orders at the depot )f6. Under full backordering, )f6 has a Poisson distribution, with the depot backorders being 

disaggregated over warehouses using a binomial distribution (i.e. given that the depot has �6 

outstanding orders, the conditional probability PrH�i6W = <W|)f6 = �6J of having <W backorders 

at the depot for warehouse Y follows a binomial distribution with �6 − �6 trials and “success 

probability” gW = �W ∑ �ê]êF0⁄ , see e.g. Graves (1985)). However, in our model the arrival rate 
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at the depot becomes state-dependent once the depot is out of stock (i.e. )f6 > �6). Then, the 

probability of a warehouse Y being out of stock increases with )f6, resulting in an increasingly 

large fraction of arrivals being lost to the system (and hence to the depot). Also, PrH�i6W =<W|)f6 = �6J no longer follows a binomial distribution, as we show later on.   

We now first show how to compute Pr H�i6W = <W|)f6 = �6J. Subsequently, we use these 

conditional probabilities to compute the state-dependent arrival rates at the depot and find the 

distribution of )f6. Finally, we find the distribution of �i6W as follows:  

PrH�i6W = <WJ = ∑ PrH�i6W = <W|)f6 = �6J PrH)f6 = �6J-ìíìîïF6    (5.2) 

In (5.2), �~ð~ is shorthand notation for ∑ �W]WF6 . Note that )f6 cannot exceed this value: the 

central depot can have at most �6 orders outstanding for replenishing its stock. Once the depot 

is out of stock, further outstanding orders can only be realized if a warehouse still has stock on-

hand, which results in backorders at the depot for that warehouse. As the number of depot 

backorders for warehouse Y cannot exceed �W, we find in an upper bound on )f6 of �6 +∑ �W]WF0  items. 

Step 1: compute )8H�i6W = <W|)f6 = �6J 

Note that PrH�i6W = 0|)f6 = �6J equals 1 when �6 ≤ �6, as these orders are only meant for 

replenishing depot stock. For �6 > �6, we have in total �6 − �6 backorders at the depot which 

must be disaggregated over the warehouses. As each warehouse Y can have at most �W  

backorders at the central depot and the total number of backorders at the depot may add up to ∑ �W]WF0 , it is clear that the total number of depot backorders cannot be disaggregated over the 

warehouses using a binomial distribution. For instance, if �6 − �6 = 5 depot backorders are to 

be allocated over 3 warehouses, with �W = 2 for each warehouse, the only possibilities "�i60, �i61, �i6c# are H"1,2,2#, "2,1,2#, "2,2,1#J. 

If �W → ∞ ∀Y, the joint distribution of �i6W "Y = 1. . N# when )f6 = �6 is a N-category 

multinomial distribution with �6 − �6 trials and success probabilities gW = �W ∑ �ê]êF0⁄ . Let us 

denote this multinomial probability distribution by 

 ¦"<0, . . , <]|)f6 = �6# = )8H�i60 ≤ <0, . . , �i6] ≤ <]|)f6 = �6J   (5.3) 

Clearly, the joint probability distribution for finite values of �W  has a truncated multinomial 

distribution, as we condition on the upper bounds �W  for the depot backorders for warehouse Y:  

¦-.,…,-ò"<0, . . , <]|)f6 = �6# = ó7�Ekï.ô(.,..,Ekïòô(ò|óyïFîï�ó7�Ekï.ô-.,..,Ekïòô-ò|óyïFîï� = L"(.,..,(ò|óyïFîï#L"-.,..,-ò|óyïFîï# (5.4) 
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We thus find the marginal probability density functions )8H�i6W = <W|)f6 = �6J, where <W ≤ �W ∀Y, as below: 

)8��i6W = <W|)f6 = �6� = ¦-.,..,-ò "�0, . . , <W , . . , �]|)f6 = �6# − ¦-.,..,-ò "�0, . . , <W − 1, . . , �]|)f6 = �6# (5.5) 

In summary, we are able to compute )8H�i6W = <W|)f6 = �6J from the multinomial distribution ¦"<0, . . , <]|)f6 = �6#. To quickly evaluate ¦"<0, . . , <]|)f6 = �6#, we use the powerful method 

by Levin (1981). Let � = �6 − �6 denote the total number of backorders at the depot for all 

warehouses jointly. Levin (1981) shows that:  

¦"<0, . . , <]|)f6 = �6# = �!åõ}ö÷ H∏ )8HøW ≤ <WJ]WF0 J)8H% = �J   (5.6) 

In (5.6), � may be any real number, the øW are independent Poisson distributed random 

variables with means � ⋅ gW, and % is a sum of independent truncated Poisson random 

variables. That is, % = ∑ âW]WF0 , where âW has a truncated Poisson distribution with mean � ⋅ gW  

and upper bound <W. As Levin (1981) states, � is a tuning parameter which may be chosen for 

convenience and numerical stability. He suggests setting � = �, because then Stirling’s 

approximation can be used to compute the first term in (5.6): 
�!åõ}ö÷ ≈ √2Ñ�. Finally, PrH% = �J 

can either be evaluated using explicit convolutions (as we do in our numerical experiments) or 

using a Normal approximation.  

Step 2. Compute )8H)f6 = �6J 

Given �6 outstanding orders at the depot, we find the arrival rate of new requests �"�6# as 

follows: with probability 1 − PrH�i6W = �W|)f6 = �6J, new demand at warehouse Y can be met 

from the regular channel (either from stock at warehouse Y or the depot, or because there is an 

item in transit from the depot to warehouse Y). Then, the depot sees requests from warehouse Y at rate �W. Otherwise, the depot sees no arrivals from that warehouse. We thus find:  

�"�6# = ∑ �WC1 − PrH�i6W = �W|)f6 = �6JD]WF0       (5.7) 

Note that �"�6# = ∑ �W]WF0  when �6 < �6, as the depot still has stock on-hand then. By 

approximating the arrival process by a Poisson process, we can model )f6 as a continuous-time 

Markov chain (Figure 5.2). In the figure, r = 1/�6 denotes the regular replenishment rate.   

 

Figure 5.2 The Markov chain characterizing the number of units in resupply at the central depot. 
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5.2.2.2 Finding $`�iWa 

We find E`�iWa from the distribution of the number of outstanding orders )fW to warehouse Y. 

As in Graves (1985), )fW (Y ≥ 1) consists of (i) the items backordered at the depot for 

warehouse Y (i.e. �i6W), and (ii) the items in transit from the depot to warehouse Y, which we 

denote by �W. Under full backordering, these two elements are independent of each other 

(Graves, 1985) and �W thus has the same distribution as that of new demand at warehouse Y 

during the lead time. Then, )fW can be computed as a convolution of �i6W and �W. However, in 

this model �i6W and �W are not mutually independent: once �i6W = �W (i.e., there are �W  

backorders at the depot for warehouse Y), the transport pipeline to warehouse Y cannot 

increase further until one of the �W depot backorders is cleared. Furthermore, new requests at 

warehouse Y are lost to the system in this state.   

Despite this complication, we can still find an accurate approximation for )fW by assuming that 

(i)  �W still has the same distribution as new demand arriving at warehouse Y during the lead 

time and that (ii) �i6W and �W are mutually independent when �i6W < �W. As a result, when �i6W < �W we find )fW as a convolution of �i6W and �W, with �W having a Poisson distribution 

with parameter �W�W. If �i6W = �W, any demand arriving at warehouse Y will be served using an 

emergency shipment from an external supplier and thus be lost to the system, with �W thus 

being 0. We realize that �W might actually be greater than 0, since there might be items in 

transit from the depot to warehouse Y that are destined for clearing previous backorders at 

warehouse Y. Still, as these items will not contribute to the replenishment of warehouse Y 

stock, they may be ignored when computing the pipeline to warehouse Y. Overall, we find: 

PrH)fW = �WJ = ¨ ∑ PrH�i6W = <WJ PrH�W = �W − <WJ·×ØH-Í�0,îÍJ(ÍF6 , �W ≠ �W∑ PrH�i6W = <WJ PrH�W = �W − <WJ-Í�0(ÍF6 + Pr H�i6W = �WJ, �W = �W
° (5.8) 

From this distribution, we subsequently find $`�iWa as follows:  

 $`�iWa = ∑ "�W − �W# PrH)fW = �WJ�îÍF-Í20       (5.9) 

To truncate the sum in (5.9), we set an upper bound on )fW of �W + üW²E, with �W the bound on �i6W and üW²E being an accurate upper bound on �W. We find üW²E when 1 − PrH�W ≤ üW²EJ < ³. 

5.3 Numerical experiment 

5.3.1 Experiment objectives 

First, we investigate whether our technique for analysing the central depot leads to more 

accurate estimations of the performance measures ��%)W and VW. To this end, we compare 

our model to that of Andersson and Melchiors (2001) which has similar characteristics. For a fair 

comparison, the transportation time �W from the depot to any warehouse Y is set to 0 and the 
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warehouse base stock levels �W to values greater than 0. Then, both models are equivalent: a 

negligible transportation time results in direct item arrivals at a warehouse if the depot has 

stock available. Hence, in our model demand is only lost if a warehouse is out of stock, which is 

similar to the Andersson and Melchiors model (AM model in short). We use discrete-event 

simulation as a benchmark for both models, with model accuracy expressed in terms of a 

relative deviation to simulated values.  

We also investigate the accuracy of our model when �W > 0. In practice, �W will be relatively 

short, given a setting with a regional depot that supplies warehouses near that depot. The 

shipment time to the depot will then greatly exceed the shipment time from the depot to any 

warehouse. As our model has not been considered in literature before, we only use simulation 

as a benchmark. 

Per problem instance, we performed a single long simulation run consisting of a warm-up period 

to reach steady-state and a data collection interval. The data collection interval was chosen such 

that the total demand at each local warehouse would be large. Each warehouse received at 

least half a million requests, with the average number of requests per warehouse being over 3 

million. 

5.3.2 Comparison to Andersson and Melchiors when ÊÛ = ± at all warehouses 

We test 32 instances with �W = 0, each with 5 or 20 warehouses. In all instances, �6 equals 10 

days, and �W equals 2 days. The remaining parameter values are given in Table 5.1 and Table 

5.2. The demand rates in Table 5.2 are specified for groups of warehouses: warehouses 1 

through 4 always have the same demand rates, as do warehouses 5 through 8, etc. The stock 

levels depend on the demand rate heights: for slow movers we use smaller stock levels than for 

fast movers. 

Parameters  Values `�0, �1, �c, �ý, �þa  `0.05,0.05,0.05,0.05,0.05a;`0.01,0.02,0.04,0.08,0.1a 

`0.5,0.5,0.5,0.5,0.5a;`0.1,0.2,0.4,0.8,1a �6  1; 2 5; 10 �W"Y ≥ 1#  1; 2 2; 4 

Table 5.1 Tested settings for problem instances with Ü=5 warehouses.  
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Parameters  Values `�0 − �ý, �þ − �µ, �ä −�01, �0c − �0�, �0� − �16a  `0.05,0.05,0.05,0.05,0.05a;`0.01,0.02,0.04,0.08,0.1a 

`0.5,0.5,0.5,0.5,0.5a;`0.1,0.2,0.4,0.8,1] 

�6  4; 8 20; 80 �W"Y ≥ 1#  1; 2 2; 4 

Table 5.2 Tested settings for problem instances with Ü=20 warehouses. 

Table 5.3 shows the accuracy of VW (i.e. the fraction of demand met through the regular 

channel) and the computation times, with our model denoted as OM. As VW fully determines ��%)W (i.e. the waiting time when using the regular channel is zero), we do not show the 

accuracy of ��%)W  as well. Clearly, our method is very accurate: all deviations are at most 

0.1%. The AM model, in contrast, performs much worse and does not even converge for 3 

problem instances (2nd column). For that model, the performance measures are estimated over 

those instances where convergence did occur. The instances where convergence did not occur 

all had a high stock level at the depot combined with low local stock levels. In those instances, 

the value of V would sometimes iterate between 0.6 and 0.99. The computation times of both 

methods are a fraction of a second, where we note that those of our method clearly increase 

with the amount of stock kept locally. 

#  not converged 

AM model 
Avg. deviation ÞÛ Max. deviation ÞÛ 

Avg. comp. 

time (millisec) 

Max. comp. 

time (millisec) N  
 

OM AM OM AM OM AM OM AM 

5 1 0.02% 0.74% 0.10% 3.29% 4 4 4 4 

20 2 0.01% 0.30% 0.06% 1.68% 24 11 47 16 

Table 5.3 The accuracy and computation times of our method (OM) and that of Andersson and Melchiors (AM), ÊÛ = ±. 

5.3.3 Accuracy of our model for instances with positive transportation times 

We test 64 instances, with all parameters except �W as before. For �W, we consider 0.5 and 1.5 

days. Table 5.4 shows the accuracy for ��%)W (i.e. the overall downtime for parts). Because 

the average deviation is influenced by a few large deviations for waiting times close to zero, we 

also show the median and the 75th and 90th percentiles. Relatively large deviations, such as 

3.1%, pertain to very small waiting times: e.g. a simulated value of 0.00035 and a computed 

value of 0.00034.  The accuracy of VW and the computation times are the same as in Table 5.3: 

neither estimate depends on the value of �W. Clearly, the ��%)-estimates are also very 

accurate: 90% of all values has a deviation below 0.6%.  

 



5.4. Conclusions 

104 

 

Ü Avg. deviation £ÁÆ�Û Max. deviation £ÁÆ�Û Median 75
th 

percentile 90
th 

percentile 

5 0.25% 3.06% 0.10% 0.24% 0.56% 

20 0.21% 2.84% 0.08% 0.22% 0.58% 

Table 5.4 The accuracy of our method for cases where ÊÛ > 0. 

5.4 Conclusions 

We developed a simple and accurate approximation for a two-echelon inventory model with 

Poisson demand and lost sales. In contrast to existing methods, we do not require restrictive 

assumptions, and our approach works very well for a broad range of settings. Our model’s 

simplicity arises from the fact that no iterative procedure is needed as in Andersson and 

Melchiors (2001). In the next chapter, we will therefore use the model as a building block in a 

multi-item model for service differentiation using dedicated customer stocks. 
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Chapter 6  

Dedicated customer stocks8 

6.1 Introduction 

In this chapter, we meet our fifth research objective by investigating the added value of 

dedicated customer stocks as a service differentiation tool. A supplier may then keep stock of 

certain items at premium customers’ sites in addition to stock at some central location. 

Dedicated stocks are often used in practice, because of its simplicity. A company specializing in 

baggage handling systems at airports, for instance, often uses such stocks to ensure fast 

reaction times when a failure occurs. Also, if the shipment time from the central stock point to a 

customer exceeds the maximum time that this customer is willing to wait for parts, it might 

even be necessary to keep some items stock at the customer’s site. Still, no research has yet 

been done on the savings possible with this approach: we expect the benefits from risk pooling 

to be smaller for this approach than for the case where all stock is kept centrally. We thus 

investigate if and when the approach has added value.  

In an extensive computational experiment, we investigate the added value of dedicated 

customer stocks by comparing it to two benchmark differentiation approaches, namely the one-

size-fits-all approach and the critical level policy. Such a comparison has not been made in the 

literature before. Furthermore, we investigate a model where dedicated stocks and critical level 

policies are jointly used for differentiation. As we have seen in Chapters 3 and 4, it may be very 

beneficial to combine differentiation tools. By considering the combination of dedicated stocks 

and the critical level policy, we can determine whether this combination also leads to significant 

savings and under what conditions each individual strategy (dedicated stocks, critical level 

policies) works best.  

We focus on a multi-item system with one warehouse that serves various customers, with each 

customer belonging to either a premium or a non-premium class. Of this system, we consider 

two variants, i.e. (i) a variant in which all unmet demand is backordered and, (ii) a variant in 

which unmet demand is satisfied through an emergency shipment from a central stock point 

with infinite supply. In both cases, we aim to minimize the costs of the system subject to 

                                                      
8
 This chapter is based on the paper “Service differentiation in spare parts supply through dedicated stocks” by E. 

M. Alvarez, M. C. van der Heijden, and W. H. M. Zijm, to appear in Annals of Operations Research.  
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restrictions on the waiting times for spares. As in Chapters 3 and 4, we solve this problem by 

using an approach similar to Dantzig-Wolfe decomposition.  

As a building block for multi-item optimization, we must be able to compute performance 

measures for a single item under each differentiation strategy (e.g. dedicated stocks, critical 

level policy) and shipment option (backordering or emergency shipments). Under the dedicated 

stocks strategy with emergency shipments, the supply chain fits in the framework that has been 

described in 0. Therefore, we can analyze that system using the approach of Chapter 5. We give 

analysis details for the remaining strategies and shipment options in this chapter.  

The chapter is organized as follows: We present our model in Section 6.2. and discuss the 

optimization approach for this model in Section 6.3. In Section 6.4, we discuss system analysis 

for a single item under the various differentiation strategies and shipment modes. We then test 

the model in an extensive experiment (Section 6.5). Finally, we draw conclusions in Section 6.6. 

6.2 Model description 

6.2.1 Outline 

We consider a warehouse supplying various items to customers in the vicinity of that 

warehouse. All items are critical: any item failure causes a system failure. Customers can be 

partitioned into two customer classes, a premium and a non-premium class, with a distinct 

target service level applying for each customer class in terms of a maximum time a customer of 

that class will wait for spares.  

We consider four strategies for meeting all service requirements at minimal costs: 

• One-size-fits-all (OSFA): all stock is kept at the warehouse, with demand met from on-

hand stock if it is available. Premium and non-premium requests are handled in the 

same way, fulfilling the tightest service level requirement. 

• Dedicated stocks (DS): stock of certain items may be kept at a customer’s facility next to 

stock at the warehouse. Demand is satisfied from customer stock if possible, with a 

replenishment request being sent to the warehouse. At the warehouse, all demand is 

satisfied from on-hand stock if possible; we do not reserve a part of the warehouse stock 

for meeting premium requests.  

• Critical level policy (CLP): all stock is kept at the warehouse. This stock is always used for 

meeting premium requests if available, whereas non-premium requests are only met if 

the warehouse stock exceeds a critical level. 

• A combined strategy with dedicated stocks and critical levels (COMBO): the individual 

strategy (DS or CLP) may vary per item, with only one strategy selected per item (i.e. DS 

and CLP may not be used for the same item).  
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The rationale behind COMBO is that the added value of each individual strategy depends on an 

item’s characteristics: DS is likely most beneficial for inexpensive fast movers, since they are 

often needed and inexpensive to keep in stock. Then, dedicated stocks avoid downtime arising 

from the shipment time between warehouse and the customer’s facility. Conversely, for 

expensive slow movers it might be better to centralize stocks and differentiate through CLP. The 

contribution of items with a low demand rate to the overall waiting time for parts is small, 

which limits the need for fast reaction times for those items. Furthermore, the risk pooling 

effect is high due to the high item value.    

In all strategies, one-for-one replenishment is used at all stock locations. Of each strategy, we 

consider both (1) a backorder variant, and (2) an emergency shipment variant. In the backorder 

variant, first-come-first-served backorder clearing is used under OSFA and DS. Under CLP, 

priority backorder clearing is used, with non-premium backorders only cleared after all premium 

backorders have been cleared and the warehouse stock level is at least the critical level. In the 

emergency shipment variant, there exists a central location with infinite capacity upstream in 

the supply chain that may supply parts directly to the customer site. As customers are located 

close to the warehouse, we assume that a shipment from the warehouse to any customer is 

faster than an emergency shipment. Therefore, emergency shipments are only used if both the 

customer and the warehouse are out of stock, and if all items in transit between the warehouse 

and customer have already been reserved for earlier requests.  

In both literature and practice, emergency shipments are often used to satisfy demand that 

cannot be met from on-hand stock at the closest warehouse (see e.g. Kranenburg and Van 

Houtum, 2008). However, in Chapters 3 and 4 we have shown that emergency shipments can be 

very costly in certain circumstances, e.g. when items have relatively low holding costs. In those 

circumstances, we concluded that backordering is the preferred shipment mode. Therefore, we 

investigate the differentiation strategies in this paper both under backordering and under 

emergency shipments.  

Figure 6.1 depicts the system, with the grey triangles specifying the differentiation options 

(either dedicated stocks or critical levels at the warehouse). We have regular and emergency 

supply channels, with replenishments for backordered requests occurring through the regular 

channels. Figure 6.2 shows the scheme for handling incoming requests. This scheme applies 

both for DS and CLP strategies, under both backordering and emergency shipments.  

We aim to minimize the system’s holding costs and additional emergency shipment costs under 

constraints on the mean aggregate waiting time per customer. Our decision variables are the 

warehouse stock level, the strategy per item (i.e. one-size-fits-all, dedicated stocks, critical level 

policy), and – if applicable – the stock levels at customer sites and the warehouse critical level. 
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Figure 6.1 Depiction of the system. 

 

Figure 6.2 Steps for handling an incoming customer request. 

6.2.2 Assumptions and notation 

6.2.2.1 Model assumptions 

• All demand occurs according to mutually independent Poisson processes. 

• The shipment time from the warehouse to any customer is deterministic.  
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• The emergency shipment time to a customer is deterministic. This is most realistic, 

although variability could be included in the model (then we use the mean only). 

• The regular shipment time to the warehouse is exponentially distributed. Although 

deterministic shipment times are generally more realistic, this assumption facilitates a 

performance evaluation based on Markov chain analysis. Also, inventory models for slow 

moving parts tend to be quite insensitive to lead time variability (Alfredsson and Verrijdt 

(1999)).  

6.2.2.2 Notation 

We keep stock of f items for N customers; index 0 refers to the warehouse, and indexes 1, … , N 

to the customers. Each customer is either a premium (class 1) customer or a non-premium (class 

2) customer, with a class � customer (� = 1,2) willing to wait at most %R&'(  time units on 

average for any item (%0&'( ≤ %1&'(). We let g"Y# denote the class to which customer Y 

belongs. Customer Y requests item � = 1, … , f at rate � W, with �W = ∑ � Wy F0   denoting the 

total demand rate from customer Y. For each item �, the shipment time to the warehouse is 

denoted by � 67}|
, the mean regular shipment time from the warehouse to customer Y is 

denoted by � W7}|
 and the emergency shipment time from the central depot to customer Y is 

denoted by � W}& (>� W7}|
). Finally, for each item � we denote the unit holding costs per time unit 

at location Y (i.e. including the warehouse) by ℎ W and the additional costs of an emergency 

shipment compared to a regular replenishment at customer Y by $! W}&. We only require the 

additional shipment costs, since each demand triggers either a regular or an emergency 

shipment.  

For each item �, we have as decision variables (1) the base stock level � W at each location Y "Y = 0, … , N#, with É = `� 6, … , � ]a denoting the system stock levels, and (2) the critical level !  denoting the amount of warehouse stock reserved for premium customers. Note that 0 ≤ ! ≤ � 6, since we cannot reserve more items than we have in stock at the warehouse. We 

combine all variables for item � in an item policy "É , ! #. For each item policy, we have as 

performance measures the expected waiting time $% W"É , ! # and the fraction of demand met 

through emergency shipments Ë W"É , ! # for item � and customer Y, and the total costs �! "É , ! # for item �. We now express problem ")1# as follows: 

")1# min t �! "É , ! #y
 F0 = t t ℎ W� W + t t Ë W"É , ! #� W$! W}&]

WF0
y

 F0
]

WF6
y

 F0  

s.t. t � W�W $% W"É , ! # ≤ %�"W#&'(y
 F0  Y = 1, … , N  

 � W, ! ∈ �6, ! ≤ � 6 � = 1, … , f, Y = 0, … , N  
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As mentioned, our system costs consist of holding costs and, if applicable, additional emergency 

shipment costs. Under backordering, Ë W"É , ! # will be 0, and thus the total costs will only 

consist of holding costs then. Holding costs are computed over the stock in the entire system, 

including items in transit to the customers. However, the model can be adjusted to compute 

holding costs over on-hand stock only. Each customer Y has a restriction on the mean aggregate 

waiting time over all items, with � W/�W being the fraction of item � waiting time that 

contributes to the aggregate waiting time. Note that the waiting time threshold %�"W#&'( depends 

on the customer’s class. 

6.3 Solution approach 

As in Chapters 3 and 4, we solve ")1# by using an approach based on decomposition and 

column generation which closely resembles Dantzig-Wolfe decomposition, i.e. we reformulate ")1# to a linear integer programming problem and solve its LP-relaxation to obtain a lower 

bound. Then, we obtain a near-optimal integer solution by solving the integer problem itself. 

Section 6.3.1 gives the reformulated variant of ")1#. Sections 6.3.2 and 6.3.3 detail how to find 

a lower bound and near-optimal integer solution respectively. 

6.3.1 Reformulation to a linear problem 

We obtain the linear variant of ")1# by considering a set of item policies for each item. Our 

decision problem becomes to select one item policy for each item such that the system costs 

are minimized while the waiting time restrictions per customer are still met. Let �  denote the 

set of item policies for item � and let 
 7 denote a single item policy CÉ "8#, ! "8#D in set � , i.e. 
 7 ∈ �  with 8 = 1,2, … , |� |. The binary variable <9:;  specifies whether 
 7 is selected for item � (<9:;  then equals 1). The reformulated problem ")2# becomes: 

 min t t �! "
 7#<9:;
|E:|
7F0

y
 F0  

s.t. t t � W�W $% W"
 7#<9:; ≤ %�"W#&'(|E:|
7F0

y
 F0  Y = 1, … , N (6.1) 

 t <9:;
|E:|
7F0 = 1 � = 1, … , f (6.2) 

 <9:; ∈ H0,1J � = 1, … , f, 8 = 1, … , |� |  

6.3.2 Lower bound 

To solve the LP-relaxation of ")2#, we must determine what item policies to include in �  for 

item �. We first construct an initial policy set to solve the LP-relaxation a first time. 

Subsequently, we use column generation to iteratively find unconsidered item policies that 

further improve the solution value. We proceed in this way until we cannot find any more 
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relevant policies. In Section 6.3.2.1, we show how we find an initial policy set. In Section 6.3.2.2, 

we give the column generation problem and the main steps in solving this problem. Finally, in 

Section 6.3.2.3 we give the formal column generation procedure.  

6.3.2.1 Creating an initial set of policies for each item 

We find an initial policy set in a similar way as for the selective transshipment model (see 

Section 4.4.1.1), i.e. we construct a policy set over all items simultaneously that results in a 

feasible solution to problem ")2#. We limit ourselves to policies without critical levels, i.e. ! = 0 ∀� irrespective of the strategy (DS or CLP, backordering or emergency shipments) 

considered. Iteratively, we add stock at the item-location combination resulting in largest 

reduction in waiting times per euro extra costs. Note that stock can be placed at the warehouse 

or at one of the customer locations, depending on the differentiation strategy considered. If 

options exist that lead to both lower waiting times and costs, we select the option with the 

greatest reduction in waiting times among those with lower costs. We proceed in this manner 

until all waiting time restrictions are met.  

We denote a stock increase at item-location "�, Y# by É + º W, with Δ%"É + º W# denoting the 

related decrease in waiting times and Δ�!"É + º W# = �! "É + º W# − �! "É # the extra 

investment. The expression Δ%"É + º W# is given below, with `�a2 = maxH0, �J. Note that we 

only focus on the amounts by which the aggregate waiting times exceed their respective 

thresholds, as our aim is only to find a feasible solution.  

Δ%"É + º W# = 
t �¡t � ��� $% �"É # − %�"�#&'(y

 F0 ¢2 − ¡t � ��� $% �"É + º W# − %�"�#&'(y
 F0 ¢2�]

�F0  
(6.3) 

 

Note that we obtain a new item policy whenever we change one stock level value. As in the 

selective transshipment model, we include all these policies in policy set �  to limit the amount 

of time needed for generating additional policies later on. We realize that some of these policies 

might be poor options. Therefore, when looking for an integer solution later on, we first remove 

any poor policies from our policy set before optimizing the integer problem. Section 6.3.3 gives 

further details.  

6.3.2.2 The column generation problem 

In the column generation step, we iteratively look for unconsidered item policies that have 

negative reduced costs. In each iteration, we find the policy with minimum reduced costs for 

each item � and we add this policy to �  if these reduced costs are negative. We proceed in this 

way until we cannot find any policy with negative reduced costs. We give further details on 

column generation in Section 1.9.2.  
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The reduced costs �$� "
 7# related to policy 
�8 are given by equation "2#, with \W ≤ 0 and �� ≥ 0 denoting the shadow prices associated with "6.1# and "6.2# respectively. 

�$� "
 7# = �$� CÉ "8#, ! "8#D = �! CÉ "8#, ! "8#D − t \W� W�W
]

WF0 $% WCÉ "8#, ! "8#D − �  (6.4) 

For three strategies, the column generation procedure has been discussed before. Specifically, 

the procedure for DS under backordering has been described in Wong et al. (2007a), that for 

CLP under backordering has been described in Chapter 3, and that for CLP under emergency 

shipments has been described in Kranenburg and Van Houtum (2008). We now focus on the 

column generation procedure for DS under emergency shipments. For the combination of DS 

and CLP (i.e. COMBO), we use both the procedures for DS and CLP. As we only consider DS, we 

omit the critical level ! "8# in the remainder of this section. Also, we omit suffix 8 for ease of 

notation.  

Under DS with emergency shipments, we find a complication for column generation that does 

not occur for the variant with backordering. Specifically, we cannot make an exact 

decomposition over customers in the emergency shipment variant, because the service level 

(i.e. fill rates and waiting times) at a customer may depend on the stock levels at other 

customers, see also Chapter 5. If the warehouse stock level is positive (i.e. � 6 > 0), a stock 

increase at a customer Y improves that customer’s service level at the expense of the service 

levels at other customers. Let us consider the special case where � W increases from 0 to 1, while � ê = 0, ℎ ≠ Y. When � W = 0 ∀Y ≥ 1, a customer’s demand is only met through regular supply 

if the warehouse has stock on-hand. Otherwise, an emergency shipment is used. Figure 6.3 

shows the Markov chain of the on-hand stock level at the warehouse (with � ~ð~ = ∑ � W]WF0  

and r 6 = 1/� 67}|
). If � W = 1, we can reach all states. In contrast, state -1 cannot be reached if � W = 0, since there are no regular replenishment orders from customer Y then. 

 

Figure 6.3 Markov chain of the warehouse stock level when there is at most 1 unit of dedicated stock. 

When � W = 1, the steady-state probability of being in states � 6 up to 0 decreases compared to 

a similar setting with � W = 0. Hence, an increase of � W causes a decrease in the warehouse fill 

rate. As a consequence, the service levels at all customers decrease, except at customer Y 

because of the additional unit of stock. 

Despite the complications described above, we can find the policy with minimum reduced costs 

by determining upper bounds on the stock levels � W, Y ≥ 0. As a result, we limit the solution 

space that we need to consider. The four observations below allow us to find these upper 
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bounds, with observations 1 and 2 focusing on the upper bound for � 6, while observations 3 

and 4 focus on the bounds for the customer stock levels � W (Y ≥ 1). Once we have described 

how to obtain all bounds, we detail how we find the best item policy in the restricted solution 

space. From now on, we let â denote the minimum reduced costs (i.e., â = min9: �$� "
 # =minÉ: �$� "É #). 

Observation 1: We can find an upper bound � 6&'( on � 6. Let �$� ∗"� 6# denote the minimal 

reduced costs for a given � 6, calculated over the stock levels at all customer locations � W"Y ≥ 1#. We thus have that â = min-:ï �$� ∗"� 6#. Equation (6.4) shows that �$� ∗"� 6# ≥ℎ�0��0 − �� ∀� 6, since the total reduced costs include the holding costs at the warehouse, and \W ≤ 0. We ignore the reduced cost elements related to the various customers (i.e., the 

elements ℎ W� W, Ë W"É #� W$! W}&, and 
PÍ&:ÍàÍ $% W"É # per customer Y), as these depend on 

the other stock levels as well. Conversely, we can determine an upper bound on â, which we 

denote by �$� ²E. We find �$� ²E  as the reduced costs of any item policy. Overall, we have 

the following relations: 

min-:ï ℎ 6� 6 − � ≤ min-:ï �$� ∗"� 6# = â ≤ �$� ²E 

From the above relation, we conclude that it is not beneficial to consider values of � 6 for which ℎ 6� 6 − � > �$� ²E. Also, it is not beneficial if ℎ 6� 6 − � > 0, since we aim to find an item 

policy with negative reduced costs. Hence, we find � 6&'( as the smallest value of � 6 for which ℎ 6� 6 − �  exceeds minH�$� ²E , 0J. 

We choose �$� ²E as minimal reduced costs over � 6 given that all customer stocks � W are zero 

(Y ≥ 1#. Then, the resulting reduced cost function is easy to optimize, as it is convex in � 6, see 

Kranenburg and Van Houtum (2007).  

Observation 2: We can further limit the relevant values for � 6. By tightening the lower bound 

on �$� ∗"� 6# as given in Observation 1, we can further limit the values of � 6 that we must 

consider. To obtain this bound, we first give an explicit expression for �$� ∗"� 6#, i.e., 

�$� ∗"� 6# = ℎ 6� 6 − � + min-:Í,W�0 t �ℎ W� W + Ë W"É #� W$! W}& − \W� W�W $% W"É #�]
WF0  (6.5) 

Notice that ℎ 6� 6 − �  has a fixed value. Hence, if we are able to find a lower bound on the 

third element of �$� ∗"� 6# (i.e., the element that depends on the customer stock levels � W "Y ≥ 1#), we also get a lower bound on �$� ∗"� 6#.  
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Given that we are able to optimize the reduced costs for a single customer Y, we obtain a lower 

bound on the third element of �$� ∗"� 6# by optimizing the reduced costs per customer and 

subsequently summing over the values obtained per customer, i.e., 

min-:Í,W�0 t �ℎ W� W + Ë W"É #� W$! W}& − \W� W�W $% W"É #� ≥ t min-:õ "��0# �$� W"� 6, É #]
WF0

]
WF0 , 

where  

�$� W"� 6, É # = ℎ W� W + Ë W"É #� W$! W}& − \W� W�W $% W"É #. 
Note that �$� W"� 6, É # is smallest when Ë W"É # and $% W"É # are small, which correspond to 

a high service level at customer Y. As shown at the start of this section, the service level at a 

customer Y deteriorates when stock is placed at other customers. Hence, the service level at Y 

is highest when no stock is kept at other customers. We thus find min-:õ "��0# �$� W"� 6, É # by 

setting � � = 0 (� ≠ Y, 0) and computing �$� W"� 6, É # over interval � W ∈ `0, … , � Wà	
a, with � Wà	
 following from observation 3. 

Observation 3: We can find a rough upper bound � Wà	
 on � W"Y ≥ 1#. An increase of � W can 

only benefit the service level at customer Y. Hence, we find � Wà	
 once the additional holding 

costs of increasing � W outweigh the maximum reduction in that customer’s emergency 

shipment and waiting time costs, i.e. � Wà	
 is the smallest � W for which ℎ W > Ë W"É #� W$! W}& − PÍ&:ÍàÍ $% W"É #. To ensure that � Wà	
 is sufficiently large, we need 

upper bounds on Ë W"É # and $% W"É #. We find such bounds by assuming that demand at 

customer Y can only be met from on-hand stock at that customer (i.e. that customer has no 

access to warehouse stock). Then, we have the worst-case scenario in terms of service level. The 

resulting system can be analyzed as an Erlang-loss system with � W servers. 

Observation 4: For a given value of � 6, we can find a tighter upper bound on � W (Y ≥ 1), 

denoted by � W&'("� 6#. As in observation 3, we find � W&'("� 6# when the holding costs of 

increasing � W exceed the emergency shipment and waiting time costs of customer Y. Compared 

to � Wà	
 (in Observation 3) , we now use more accurate values for Ë W"É # and $% W"É #, which 

we find by also considering the stock kept at other locations in the system. Specifically, we set 

all other customer stock levels � � "� ≠ Y, 0) to � �à	
 and then we determine Ë W"É # and $% W"É #. As the service level at customer Y is lowest when the stock levels at other customers 

are large, the values for Ë W"É # and $% W"É # will still be sufficiently large. 

In addition to these observations, we empirically find that the optimal value of � W for a given � 6, denoted by �� W"� 6#, generally lies between two thresholds � W  "� 6# and � W   "� 6#. We find 
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� W  "� 6# as the value of � W ∈ H0, … , � W&'("� 6#J that minimizes �$�"É # when all other 

customer stock levels � � "� ≠ Y, 0# are set to their upper bounds � �&'("� 6#. Similarly, we find � W   "� 6# as the optimal � W when all other customer stock levels are set to their lower bounds � �& �"� 6# = 0. Since we optimize � W in two extreme cases (the remaining customer stocks are 

either at their maximum or at their minimum), we expect the optimal value of � W to lie 

between � W  "� 6# and � W   "� 6#. Note that � W  "� 6# and � W   "� 6# in fact give us new bounds on �� W"� 6#. We can thus repeat the mentioned steps (i.e. we can find new values for � W  "� 6# and � W   "� 6#) by updating � W& �"� 6# and � W&'("� 6#. We proceed in this way until the bounds 

stabilize (either because the values for � W& �"� 6# and � W&'("� 6# no longer change or because � W  "� 6# = � W   "� 6# for all customers Y). 

Overall, the procedure works as follows: We increase � 6 from zero up to � 6&'( with step size 1. 

In each step, we first verify whether it is beneficial to consider that value of � 6 (see observation 

2) and, if so, we compute � W  "� 6# and � W   "� 6# for each customer Y. Then, we look for the 

combination of customer stock levels that has minimum reduced costs, given � W  "� 6# ≤ � W ≤� W   "� 6#.  

6.3.2.3 The formal steps of the column generation procedure  

Full column generation procedure 

1. Find � 6&'( from observation 1. 

2. For each customer Y, find a rough upper bound � Wà	
 on the optimal stock level 

(observation 3).  

3. For each � 6 ∈ H0, … , � 6&'(J do: 

a. Determine whether the tighter lower bound for �$� ∗"� 6# (see observation 2) is 

below the best reduced cost upper bound so far (either minH�$� ²E , 0J from 

observation 1 or the most recent value for â). If not, skip steps 3b through 3e. 

b. Find a tighter upper bound � W&'("� 6# on the optimal stock level for customer Y 

(see observation 4). 

c. Find thresholds � W  "� 6# and � W   "� 6# for each customer Y. 

d. Find the customer stock combination `� 0, … , � ]a that minimizes �$� "É #, with � W  "� 6# ≤ � W ≤ � W   "� 6#. 

e. If the solution is the best so far, store it. Also store the related reduced costs as â. If ℎ 6"� 6 + 1# − �  (i.e. the lower bound on the reduced costs for � 6 + 1) 

exceeds â, exit the procedure.  

Next, we give further details on steps 1 through 3c.  
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Step 1. Finding � 6&'(. 

1. Determine an upper bound �$� ²E on the reduced costs.  

a. Set all customer stocks � W to zero "Y ≥ 1#. 

b. Find the � 6 that minimizes �$� "É #. Set �$� ²E to this value. 

2. Find � 6&'( as the smallest � 6 for which ℎ 6� 6 − �  exceeds minH�$� ²E , 0J. 

Step 2. Finding � Wà	
 for each customer Y. 

1. Consider an Erlang Loss system with � W servers and replenishment rate r W =1/"� W7}| + � 67}|#. Our performance measures now only depend on � W: we find Ë W"� W# 

as the probability of all servers being occupied, with $% W"� W# being equal to � W}&Ë W"� W#. 

2. Find � Wà	
 as the smallest � W-value for which ℎ W exceeds Ë W"� W#� W$! W}& −PÍ&:ÍàÍ $% W"� W#. From that moment, the reduced costs cannot improve further.  

Step 3a. Compute a tighter lower bound on the minimal reduced costs �$� ∗"� 6#. 

1. For each customer Y do: 

a. Set all other customer stocks � � � ≠ Y, 0 to 0. 

b. Find the value for � W ∈ `0, … , � Wà	
a that minimizes �$� W"� 6, É #. 

2. The bound on �$� ∗"� 6# now equals ℎ 6� 6 + ∑ min-:õ "��0# �$� W"� 6, É #]WF0 − � . 
Step 3b. Finding � W&'("� 6# for any � 6. 

1. Set all other customer stocks � � � ≠ Y, 0 to � �à	
. 

2. � W&'("� 6# is the smallest � W for which ℎ W > Ë W"É #� W$! W}& − PÍ&:ÍàÍ $% W"É #. 

Step 3c. Finding � W  "� 6# and � W   "� 6#. 

1. Set all customer lower bounds � W& �"� 6# "Y ≥ 1# to 0. 

2. Find � W  "� 6# for each customer Y. 

a. Set all other customer stocks � � � ≠ Y, 0 to � �&'("� 6#. 

b. Find � W  "� 6# as the � � ∈ �� W& �"� 6#, … , � W&'("� 6#� that minimizes �$� "É #.  

3. Find � W   "� 6# for each customer Y. 

a. Set all other customer stocks � � � ≠ Y, 0 to � �& �"� 6#. 

b. Find � W   "� 6# as the � � ∈ �� W& �"� 6#, … , � W&'("� 6#� that minimizes �$� "É #. 

4. Exit if (i) � W  "� 6# = � W   "� 6# ∀Y ≥ 1, or (ii) neither � W  "� 6# nor � W   "� 6# has changed 

compared to the previous iteration for any customer. Otherwise, set � W& �"� 6# to minH� W  "� 6#, � W   "� 6#J and � W&'("� 6# to maxH� W  "� 6#, � W   "� 6#J and proceed to step 2.  
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We cannot guarantee that the procedure just described always finds the policy with minimal 

reduced costs, since the optimal value for � W given � 6 does not always lie between thresholds � W  "� 6# and � W   "� 6# (as assumed in step 3d). Still, in a computational experiment of 100 

instances – with the number of items either 20 or 50 and the number of customers either 8 or 

16 – we always found the same lower bound as when we used a complete enumeration 

procedure for column generation (where all relevant combinations of stock levels were 

considered).  

6.3.3 Near-optimal integer solution 

The optimal solution to the LP-relaxation might be fractional, i.e. it might be that a combination 

of item policies has been selected for certain items. Therefore, we also require an approach to 

find a near-optimal integer solution. As in Chapter 3 and 4, we obtain such a solution by solving 

the integer problem ")2# using a limited set of item policies.  

As before, we start with the set of item policies generated when solving the LP-relaxation of ")2#. This policy set might contain many item policies: when constructing our initial policy set 

(Section 6.3.2.1), we included all found policies in � . We also added additional policies during 

column generation. Such a large policy set is not an issue when solving an LP-relaxation, but 

computation times might explode when solving the integer problem. Therefore, we eliminate all 

dominated item policies from the LP-relaxation set before solving the integer problem. 

Dominated policies have both higher costs and higher waiting times than at least one other 

policy in the policy set. As a result, such policies will never be chosen and they can thus be 

eliminated from the policy set without sacrificing solution quality.  

6.4 Evaluation of an item policy 

We now shortly describe how we can obtain performance measures for an item policy using 

Markov chain analysis. We do so for any differentiation strategy (DS, CLP) and shipment option 

(backordering, emergency shipments). A detailed description of the evaluation procedure for 

each policy type has been given before either in other chapters of this dissertation or in the 

referred literature.  

Under CLP, we only need to analyze the warehouse to obtain the needed performance measure 

values, as this is the only location where stock may be kept. Indeed, under emergency 

shipments we find performance measures directly from the distribution of the pipeline to the 

warehouse: if we have fewer than � 6 −  !  items in the pipeline, demands from both customer 

classes are satisfied from warehouse stock. Otherwise, only demand from premium customers 

is met from on-hand stock if possible, with non-premium demand being covered by emergency 

shipments. Kranenburg and Van Houtum (2008) further detail how an item policy can be 

analyzed under lost sales. In contrast, under backordering we require both the number of items 
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in the pipeline and the number of class 2 backorders to analyze the system. We described the 

evaluation procedure for this system in Chapter 3. 

Under DS, we can keep stock at both the warehouse and the customers. As a result, we obtain a 

two-echelon system for analysis purposes. Under full backordering, the analysis of such a 

system has been considered by Graves (1985) and Wong et al. (2007a) amongst others. Those 

authors first analyze the warehouse to obtain per customer the distribution of items 

outstanding at the warehouse (i.e. the items that still need to be shipped to that customer). 

Using this distribution, the authors determine the distribution of the pipeline to each customer, 

which consists of the items outstanding for that customer at the warehouse and the number of 

items in transit from the warehouse to that customer. Finally, the authors use these pipeline 

distributions to determine the expected number of backorders at each customer (resulting in an 

expected waiting time through Little’s Law). Under emergency shipments, analysis is 

complicated by the fact that the distribution of outstanding items at the warehouse depends on 

the availability of stock in the entire system. We described the analysis approach for this system 

in Chapter 5.  

6.5 Computational experiment  

In this section, we describe our computational experiment. We give the objectives in Section 

6.5.1, the experiment design in Section 6.5.2, and the results in Section 6.5.3. 

6.5.1 Experiment objectives 

First, we investigate the performance of our optimization approach for the DS strategy with 

emergency shipments in terms of solution quality and computation time. Second, we determine 

the added value of using dedicated customer stocks for differentiation by comparing the results 

under DS to those under a one-size-fits-all strategy (OSFA) and those under CLP. Finally, we 

consider the added value of the COMBO strategy where the differentiation mode (i.e. DS or CLP) 

may differ per item. 

6.5.2 Experiment design 

Table 6.1 shows the parameter values we used for our problem instances.  
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 Parameter Values 

 Number of items f 20; 100 

 Number of customers N 8; 16 

 Percentage premium customers (% of N) 12.5; 25 

 "%0&'(; %1&'(# (hours) (2;8); (2;16) 

 Intervals for demand rates � W (per day) [0.002 – 0.025]; [0.002 –0.075]  

 Intervals for holding costs ℎ  (per day) [0.1 –10]; [0.1 – 100] 

 � 67}|
 (days) 5; 15 

 � W7}|
 (hours) 0.5; 1.5 

 � W}& (as a % of � 67}|
) 10; 20 

 $! W}& (per shipment) 1000 

Table 6.1 Parameter settings in problem instances. 

We express some values in days and others in hours, with 1 day equal to 24 hours. Except for 

the demand rates and holding costs, the parameter values are the same for all items, and if 

applicable for all customers, in a problem instance. The demand rates � W  and holding costs ℎ  
are randomly drawn from uniform distributions on the specified intervals. For simplicity, we use 

the same holding cost value at all locations in a problem instance. Also, we expect that the main 

factors influencing the holding cost value – such as opportunity cost on the investment and risk 

of obsolescence – do not depend on the item’s location. 

Our parameter values are partially based on those by Wong et al. (2007a) who consider a similar 

setting. Note that � W7}|
 has very small values compared to the other shipment times: under CLP, 

the mean waiting time for each customer will be at least � W7}|
. Hence, we can only find solutions 

under CLP if � W7}|
 is smaller than %0&'(. Our demand rates have been chosen such that we 

mainly consider slow moving items: the maximum demand rate per year is 27 units. 

Furthermore, case studies at multiple companies have shown that spare parts can be very 

expensive, with values exceeding 100,000 euro’s. We assume that an item’s annual holding 

costs are 25% of its value – a common assumption in practice – and thus consider item values 

up to 146,000 euro’s. 

For each combination of parameters 1 through 9, we create 3 samples of demand rates and 

holding costs, thereby ensuring that our results are not sensitive to the specific values of one 

sample. In total, we have 2304 instances: 3 (samples) * 28 (parameters 1..8) = 768 instances for 

each of the strategies (i) backordering, (ii) emergency shipments with � W}& as 10% of � 67}|
, (iii) 

emergency shipments with � W}& as 20% of � 67}|
.  
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6.5.3 Results  

We discuss the results for each experiment objective in a separate section. 

6.5.3.1 Performance of the optimization approach 

We determine the solution quality of the optimization approach by comparing the integer 

solutions found to their lower bounds. The solution quality is expressed as a gap to the lower 

bound, i.e. "�!yó − �!zE#/�!zE with �!zE and �!yó respectively denoting the lower bound and 

integer solution value. 

Table 6.2 summarizes the results on solution quality and computation times. The solution 

quality is very good, with gaps below 1%. Furthermore, for instances with many items the 

maximum gap is only 0.1%. The approach will thus work well for practical instances. The 

computation time of an instance is roughly 3 minutes on average, with over 98% of the 

instances having a computation time below 30 minutes. The maximum computation time is 218 

minutes. Computation times are largest when there are many customers, and when item 

demand rates and the shipment time � 67}|
 to the warehouse are large. 

Parameter Values Gap to lower bound Computation time (mins) 

  Average Maximum Average Maximum 

f 
20 0.2% 1.0% 0.7 80 

100 0.0% 0.1% 4.7 218 

N 
8 0.1% 0.8% 0.3 4 

16 0.1% 1.0% 5.0 218 

� 67}|
 

5 0.1% 1.0% 0.8 8 

15 0.1% 0.8% 4.6 218 

� W – interval 
[0.002 – 0.025] 0.1% 1.0% 1.0 12 

[0.002 – 0.075] 0.1% 0.6% 4.4 218 

Overall  0.1% 1.0% 2.7 218 

Table 6.2 Performance of the optimization approach for DS with emergency shipments. 

6.5.3.2 The added value of dedicated stocks (DS) 

We compare the solutions under dedicated stocks to those under one-size-fits-all (OSFA) and 

under critical level policies (CLP). OSFA serves as a benchmark as it is a special case of both DS 

and CLP. We express the added value of the latter two strategies in terms of a relative cost 

saving over OSFA "�!k-�	 − �!ly��#/�!k-�	. Here, �!k-�	 denotes the costs under OSFA and �!ly��  those under a differentiation strategy. Figure 6.4 shows the savings under both 

backordering and emergency shipments. Under backordering, the average savings under DS and 

CLP are 13% and 19% respectively (with maximum savings for both strategies close to 40%). 

Under emergency shipments, the average savings are 5% for each strategy.  
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Figure 6.4 Relative savings of DS, CLP and COMBO over OSFA. 

Although CLP generally outperforms DS under backordering, Figure 6.5 shows that DS is 

particularly beneficial when there are relatively few (premium) customers and when the 

shipment time from the warehouse to the customers is large. In those circumstances, the 

savings are comparable to those under CLP. When there are few premium customers, we need 

little dedicated stock to effectively apply differentiation. Storing items at customer sites also 

becomes more interesting (and possibly even necessary) when shipment times to customers are 

relatively large.  

 

Figure 6.5 Average savings of DS and CLP over OSFA – backordering setting. 

Under emergency shipments, the parameter values of an instance heavily influence the height 

of the savings for both DS and CLP, as shown in Figure 6.6. A key observation is that it is clearly 

not beneficial to use either DS or CLP in combination with emergency shipments for inexpensive 

items. For such items, emergency shipments are relatively expensive. This prompts the model to 

keep high stock levels simply to limit emergency shipment costs as opposed to keeping stock to 

reduce waiting times. Indeed, we then find that the aggregate waiting times per customer are 
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much lower than the corresponding thresholds. In contrast, when item holding costs are high, 

stock is mainly kept to satisfy premium waiting time requirements. As a result, the aggregate 

waiting times for premium customers are very close to %0&'(. DS and CLP also lead to large 

savings when the regular shipment times – both to the warehouse and from the warehouse to 

the customers – are relatively large.  

 

Figure 6.6 Average savings of DS and CLP over OSFA  - emergency shipments setting. 

Overall, the savings under DS are close to those under CLP. In some cases, the savings under the 

two strategies are even comparable, especially when emergency shipments are used for 

demand that cannot be met from the system. Of the two strategies, we expect DS to be the 

easiest one to implement in practice. Also, DS might be the only viable option if the shipment 

times to the customers exceed the waiting time thresholds. For instance, if � W7}|
 is 2 hours while %0&'( equals 1 hour, some stock must be kept at premium customers’ sites to ensure that the 

average waiting times are within target. In that setting (with %1&'( either 4 or 8 hours and the 

other parameters as in Table 6.1), the average fraction of items kept at premium customers’ 

sites increases greatly compared to the setting with the original shipment times and waiting 

time thresholds, see Figure 6.7. In the figure, ‘BO’ stands for backordering, while ‘ES’ stands for 

emergency shipments. Notice that we rarely keep stock at non-premium sites, even when we 

reduce %1&'( by half. 
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Figure 6.7 Fraction of items kept a customer sites both for the original parameter setting and for a setting with 

tighter waiting time restrictions. ‘BO’: backordering, ‘ES’: emergency shipments. 

For the original problem setting (Table 6.1), we analyzed the items kept at customer sites. We 

found that dedicated stocks are mainly kept of inexpensive, fast moving items. Figure 6.8 shows 

both the average holding costs and demand rate of items kept at premium customers’ sites 

compared to the overall mean item holding cost and demand rate. We ignore stock kept at non-

premium sites, as this rarely occurs. The results are based on instances with holding cost 

interval [0.1 – 100] and demand rate interval [0.002 – 0.075]; the figures are similar for different 

intervals.   

 

Figure 6.8 Characteristics of items kept at premium customers’ sites (compared to the overall values). 

6.5.3.3 The COMBO strategy 

Figure 6.4 shows the savings of the COMBO strategy. Notice that these savings are not much 

larger than those under DS or CLP. Still, a mix of dedicated stocks and critical level policies is 

used in many solutions: under emergency shipments, such a mix is used for 30% of all instances 

overall, and for 58% of instances with relatively high holding costs (i.e. holding cost interval `0.1 − 100a). Under backordering, such a mix is used for over 70% of all instances. 
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In the instances where both dedicated stocks are critical level policies are used, we use 

dedicated stocks for roughly 20% of the items, and critical level policies for roughly 49% of the 

items. However, the actual frequency with which a strategy is used depends on the parameter 

values, see Figure 6.9.  

 

Figure 6.9 Average fraction of items per strategy (incl. the option of not using differentiation) in the combo 

approach – instances where both DS and CLP are used. 

A detailed analysis of the instances where a combination of DS and CLP is used shows that DS is 

mainly used for very cheap items, while CLP is used for relatively expensive items. Figure 6.10 

shows this for the instances with a holding cost interval of `0.1 − 100a; we find similar figures 

for other holding cost intervals. This observation is logical: if items are inexpensive, it is best to 

keep them at customer sites to minimize waiting time. Conversely, it will be too expensive to 

keep high value items at all sites. Therefore, stock should be centralized, with a critical level 

policy used for differentiation purposes. We were unable to draw clear conclusions on the item 

demand rates per strategy. 

 

Figure 6.10 The average item holding costs per differentiation strategy. 
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6.6  Conclusions 

In this chapter, we investigated the use of dedicated customer stocks as a differentiation tool. 

For a multi-item two-class system with dedicated stocks and emergency shipments, we 

developed an optimization approach that works well: the integrality gaps are always below 1% 

and for instances with many items the maximum gap is even 0.1%. Furthermore, computation 

times are 3 minutes on average and remain below 30 minutes for most problem instances we 

tested. Other key conclusions that we draw from this chapter are: 

• Dedicated stocks have significant added value. The average savings of DS compared to 

an approach where no differentiation is used (i.e. OSFA) are 13% under backordering 

and 5% under emergency shipments, with maximum savings equal to 37% and 40% 

respectively. Furthermore, the savings obtained under DS are comparable to those 

under CLP (who has average savings of 19% and 5% under backordering and emergency 

shipments respectively). 

• Under emergency shipments, both dedicated stocks and critical level policies only have 

added value if holding costs are relatively high. If holding costs are low, stock is kept to 

avoid expensive emergency shipments. As a result, no differentiation takes place, as 

both premium and non-premium aggregate waiting times are below their thresholds. 

• Dedicated stocks are very beneficial, if not necessary, when the shipment time to 

customers is large. As shipment times to customers increase, it might no longer be 

possible to only keep stock centrally if customers have high service requirements. So far, 

this fact has been largely ignored in literature on critical level policies, where the 

shipment time to customers is assumed to be negligible as it is often much smaller than 

the shipment time to the warehouse.  

• We find relatively small additional gains under the combined strategy (COMBO) 

compared to DS or CLP. The practical relevance of this observation is that dedicated 

stocks indeed have significant added value, as we do not find much greater savings by 

adding critical levels.  

• Under the combined strategy, we keep dedicated stocks of inexpensive items, while 

using critical level policies for expensive items. Keeping dedicated stocks of inexpensive 

items greatly reduces waiting time at little expense. Conversely, it is too expensive to 

keep high value items at customer sites. Instead, stock should be centralized to benefit 

all customers, with some stock reserved for premium customers.  

So far, we did now allow both DS and CLP to be used for the same item. Still, we do not expect 

further savings if this option had been available: for the parameter values in Table 6.1, we 

compared our COMBO strategy under backordering to a variant where CLP and DS could be 

used for the same item. The savings of the new strategy where at most 0.6% of the original 
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COMBO strategy. We expect that the lack of savings is caused by the fact that DS is beneficial 

for a different set of items than CLP: as shown in Section 6, DS is beneficial for inexpensive 

items, while CLP is used for expensive items. 

In this chapter, and Chapters 3 and 4, we have considered tools for applying service 

differentiation in spare parts supply. However, in Section 1.2 we have shown that the overall 

system downtime may depend on various other resources, amongst others service engineers. In 

Chapter 7, we therefore consider priority mechanisms when assigning service engineers to 

customers as a differentiation tool.  
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Chapter 7  

Priority mechanisms when assigning 

service engineers to customers9 

7.1 Introduction 

In the previous chapters, we investigated various control options for applying differentiation in 

spare parts supply. However, a service provider also depends on other resources besides spare 

parts when providing service to its customers. Indeed, in the printing and copying equipment 

industry for instance the availability of service engineers is the main bottleneck in ensuring that 

all service level agreements are met. In this chapter, we therefore consider human resources, 

where we focus on the assignment of a set of engineers to a group of customers with varying 

service level requirements, thereby meeting our 7th research objective.  

 When a customer’s system breaks down, an engineer diagnoses the cause of the failure and 

then repairs the system. A key performance indicator is the response time, i.e., the time 

between the reporting of a failure and the arrival of the engineer at the customer’s site. 

Naturally, the response time is influenced by the manner in which service engineers are 

assigned to customers. In this chapter, we focus on priority assignment, i.e., an available 

engineer is assigned to the customer with the highest priority as opposed to the customer that 

has been waiting longest. As a result, customers with high service level requirements exhibit low 

response times at the expense of other customers. Given this assignment mechanism, we aim to 

accurately estimate the waiting times for the various classes of customers, with the customer’s 

class indicating the required level of service. As we aim for a high probability that service level 

targets are met, mean waiting times alone are insufficient: We need the waiting time 

distribution per customer class. Then, combined with the travel time to customers, we have an 

estimate of the response times per customer class, and hence of the service provider’s 

performance on his response time targets. In the remainder of the chapter, we assume that 

travel times to customers are known. Therefore, these times can be ignored, with the response 

times only depending on the waiting times for engineers to become available.  

                                                      
9
 This chapter is based on the working paper “Approximations for the waiting time distribution in an �/�/� priority 

queue” by A. Al Hanbali, E.M. Alvarez and M.C. van der Heijden. 
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We estimate the waiting time distribution per customer class by modeling the system as a multi-

class, non-preemptive �/�/� priority queue with identical service time distributions in the 

distinct classes. We consider this system for the following reasons:  

• Poisson arrivals: In practice, complex systems seem to have a constant hazard function, 

since failures arise from various causes, thus appearing completely random. Such 

randomness holds even more in systems with a high electronic content, where material-

based fatigue does not occur. Therefore, Poisson arrivals are often a valid assumption. 

We have observed such behavior for printing and copying equipment amongst others, 

and Jardine and Tsang (2006) give additional cases where this assumption is reasonable 

in Section 3.5.5. 

• Non-preemptive priorities: Once an engineer has been assigned to a customer, he will 

first service that customer before proceeding to another, even if a higher-priority 

customer appears in the meantime. Hence, we consider a non-preemptive discipline. 

• Equal service time distributions: We consider the setting where all customers have 

similar types of systems. As a result, the failure behavior of the system, and hence the 

distribution of the time to repair the system, will be the same at all customers. 

As shown in Section 1.7.5, the literature on multi-class �/�/� queues with a non-preemptive 

priority service discipline is limited. For the case where � = 1, there is far more literature. To 

our best knowledge, only three papers consider a model similar to ours: Wagner (1997) uses an 

approximate approach based on matrix geometric methods to primarily estimate the mean 

waiting time per class in a multi-class model with a generalized Markovian arrival process and a 

phase-type service time distribution. In contrast, Williams (1980) and Jagerman and Melamed 

(2003) both estimate the waiting time distributions per class in an �/�/� queue. Williams 

focuses on 2 priority classes that have identical service time distributions, while Jagerman and 

Melamed (2003) consider multiple classes with the service rates possibly differing among 

classes. Both papers make the following approximations: (i) the delay probability in an �/�/� 

queue is approximated by the same probability in an �/�/� queue with equal arrival rates and 

service rate, and (ii) when all servers are occupied, the Laplace-Stieltjes Transform (LST) of the 

service time in an �/�/� queue is approximated by that of the service time in an �/�/1 queue 

when the server works � times as fast as in the original �/�/� queue. Williams (1980) states 

that the approximations above are exact both for the single server �/�/1 and the multi-server �/�/� queue. Hence, it follows that the mean waiting time for a class-Y customer satisfies the 

following well-known scaling approximation, which can easily be derived by conditioning on the 

waiting time when all servers are occupied, see, e.g., Buzen and Bondi (1983):   


`%W"�/�/�#a
`%W"�/�/�#a ≈ 
`%W"�/�/1#a
`%W"�/�/1#a,  
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where the server in the �/�/1 and �/�/1 queues works � times faster than in the related �/�/� and �/�/� queues. This scaling approximation also holds for the second moment of 

the waiting time. 

Neither Williams (1980) nor Jagerman and Melamed (2003) validate the quality of their results.  

Still, we found that Williams’ method can be inaccurate, especially in settings with many 

servers. Our main contributions in this chapter are: (i) we refine the approximation assumption 

of Williams (1980) and Jagerman and Melamed (2003), and from that we obtain very accurate 

methods to estimate the waiting time distribution per class in a system with multiple priority 

classes. As we will show in a computational experiment, our methods generally outperform 

Williams’ method, particularly for the highest priority classes. Also, (ii) we present options to 

simplify the analysis such that large systems (with many servers and a phase-type service time 

distribution with many phases) can still be quickly analyzed with a limited decrease in accuracy. 

Finally, (iii) we apply our methods to determine service level performance in a practical setting. 

In the remainder of the chapter, we first describe our model in Section 7.2. There, we also 

globally present the analysis approach for this model. A key building block of the approach is the 

analysis of a single-class system, which we give in Section 7.3. We give extensions for speeding 

up the computations in Section 7.4. In Section 7.5, we evaluate our analysis methods and 

extension options in an extensive numerical experiment. In Section 7.6, we apply the best 

variant to a case study.  Finally, we draw our main conclusions in Section 7.7. 

7.2 Model description and main analysis steps 

We present our model with notation in Section 7.2.1, and provide the analysis in Section 7.2.2.  

7.2.1 Model description 

We consider a non-preemptive �/�/� priority queue with N classes. Customers of class Y have 

priority over those of classes � ≥ Y + 1 (i.e., class 1 customers have the highest priority). Class Y 

customers arrive according to a Poisson process with rate SW, with S = ∑ SW]WF0  denoting the 

total arrival rate. All customers have the same service time distribution, with 
`�a denoting its 

mean, ��-1 its squared coefficient of variation, �"�# the cumulative distribution, and  ��"U# the 

Laplace-Stieltjes transform (LST). The utilization rate per class is denoted by ÓW = �Í
`-a� , with Ó = ∑ ÓW]WF0 . We assume that the queue is stable (i.e., that Ó < 1) and that all moments of the 

service time are finite.   

Our aim is to estimate the following performance measures:  

• The delay probability ÑÔ, i.e., the steady-state probability that all servers are occupied. 

This probability does not depend on the priority mechanism used.  
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• The first two moments of the conditional waiting time !%W per class Y given that all 

servers are occupied.  

Then, we can fit a reasonable class of distributions on these performance measures to 

approximate the distribution of the overall waiting time per class. A continuous distribution on 

which data is commonly – and accurately – fitted is the gamma distribution. In Appendix C, we 

detail how the parameters for the gamma distribution can be selected to approximate the 

waiting time distribution per class.   

7.2.2 Main analysis steps 

For ÑÔ, a fairly accurate approximation is the delay probability in an �/�/� queue, i.e., ÑÔ can 

be written as Erlang’s ! formula, see, e.g., Tijms (2003). We now first describe how to obtain 

the first two moments of !%0, i.e., the conditional waiting time for class 1. Next, we focus on 

the conditional waiting time moments of the remaining classes.  

To find 
`!%0a and 
`!%01a we use the following arguments. Given that we consider a non-

preemptive service discipline, it does not matter what type of customers are being served when 

a class 1 customer arrives to find all servers busy. Also, new arrivals from classes 2 up to N have 

no impact on the waiting time for class 1. Therefore, we obtain 
`!%0a and 
`!%01a as the first 

two moments of the conditional waiting time in a single-class �/�/� queue with arrival rate S0. 

To obtain 
`!%Wa and 
`!%W1a for classes Y ≥ 2, we use an argument similar to Williams 

(1980) and Cohen (1969). We first sketch what happens when a tagged customer of class Y 

arrives to the system when all servers are occupied. Upon arrival, he will see �0 customers, say, 

of classes � ≤ Y that are already waiting to be served. The waiting time of the tagged customer 

will thus at least consist of the time needed to clear these �0 customers from the queue, which 

we denote by �0. During �0, new customers of classes � < Y may arrive that have priority over 

the tagged customer. Let �1 denote the number of higher priority customers that arrive in the 

time that the first �0 customers are cleared from the queue. While these �1 customers are 

being cleared, new higher priority customers may arrive, and so forth. Overall, the waiting time 

for the tagged class Y customer thus consists of two elements: (i) the time �0 to clear all �0 

customers of classes � ≤ Y that were already present in the queue and (ii) the time �1 to clear 

those customers of class � < Y that arrive while the tagged customer is waiting, starting with 

the �1 customers that arrive while the first �0 are being cleared. Note that �0 and �1 are not 

strictly consecutive, as the higher priority customers that arrive while the tagged customer is 

waiting may also have priority over some of the �0 customers that were already present in the 

system. The values �0 and �1 simply denote the workloads associated with clearing the initial �0 

customers and clearing all higher priority customers that arrive after the tagged customer 
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respectively. Obviously, �1 and �0 are strongly correlated: If �0 is large, �1 will be large and so 

will �1.  

We compute �0 as the conditional waiting time in a single-class �/�/� queue with arrival rate SW∗ = ∑ S W F0 . By conditioning on �0, we can evaluate the distribution of �1, and then 

approximate �1 as the residual busy period in a single-class �/�/� queue with arrival rate SW�0∗ . 

Here we define the residual busy period as the period until all higher priority customers have 

left the queue, starting with �1 higher priority customers in the queue, one server just starting 

with service, and the other � − 1 servers busy with servicing a customer for some unknown 

time. We approximate the residual service time of those � − 1 customers in service by the 

equilibrium excess of the service time as it is known from renewal theory. Furthermore, we 

approximate the residual busy period length by the sum of �1 independent and identically 

distributed busy periods that each start with an arrival of one customer to the queue. This 

approximation is exact for the �/�/1 and �/�/� queues, see, e.g., Tijms (2003) and Riordan 

(1962).  

Let âW be the random variable that denotes the conditional waiting time in an �/�/� queue 

with arrival rate SW∗ , with â�W"U# being the related LST. Similarly, let �W�0 and ��W�0"U# be the 

random variable and LST of the busy period of an �/�/� queue with arrival rate SW�0∗ . Note 

that âW corresponds to �0, while �1 = ∑ �W�0, �/ F6 , where �W�0,  are i.i.d. copies of �W�0. As an 

approximation, we can now express the conditional waiting time for a class Y customer as !%W = âW + ∑ �W�0, �/ F6  with the related LST !%� W"U# as follows, see, e.g., Williams (1980): 

!%� W"U# ≈ â�W uU + SW�0∗ v1 − ��W�0"U#wx. (7.1)  

By taking the first two derivatives at point zero, we find the first two moments of !%W, Y = 2, … , N: 


`!%Wa = "1 + SW�0∗ 
`�W�0a#
`âWa, (7.2)  


�!%W1� = SW�0∗ 
��W�01 �
`âWa + "1 + SW�0∗ 
`�W�0a#1
�âW1�. (7.3)  

In the above equations, we indeed see that the length of the residual busy period is influenced 

by the time needed to clear all � ≤ Y customers that were initially present in the queue. In 

expression (7.2), for instance, SW�0∗ 
`âWa is the expected number of higher priority customers �1 that arrive while the first �0 customers are being cleared.  

Note that 
`âWa and 
`âW1a denote the first two moments of the conditional waiting time in a 

single-class �/�/� queue with arrival rate SW∗ , Y = 2, … , N. Similarly, 
`�Wa and 
`�W1a denote 

the first two moments of the busy period in a single-class �/�/� queue with arrival rate SW∗ , 
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Y ≤ N − 1. Hence, we obtain the first two moments of the conditional waiting time for each 

customer class – including class 1 – from the analysis of a single-class �/�/� queue.  

In Section 7.3, we detail how we can analyze a single-class �/�/� queue, resulting in the first 

two moments of the conditional waiting time and the first two moments of the busy period. 

7.3 Detailed analysis of a single class Ú/�/ç system 

We now show how to analyze a single-class �/�/� queue with arrival rate S as a building block 

for the multi-class model (note that we do not need class index Y in this section). In Section 

7.3.1, we show how to compute the first two moments of the conditional waiting time !%. In 

Section 7.3.2, we describe the computation of the first two moments of the busy period �, i.e., 

the period in which all servers are occupied. 

7.3.1 Computation of 
`�Æa and 
`�Æ¥a 

We consider two approximate methods to obtain 
`!%a and 
`!%1a, which are both based on 

Section 9.6.2 in Tijms (2003). The first method, which we denote by AVA110, is discussed in 

Section 7.3.1.1, whereas the second, denoted by AVA2, is discussed in Section 7.3.1.2.  

In both AVA1 and AVA2, we obtain performance measures for the �/�/� queue from those for 

other queues, specifically the �/�/� and �/�/� queues. We denote a performance measure � for the �/�/� queue and the �/�/� queue by �"�<¦# and �"���# respectively. 

7.3.1.1 AVA1 

We can find the first two moments of the waiting time (both conditional and unconditional)  by 

using the distributional form of Little’s law (see Bertsimas and Nakazato, 1995, Theorem 1), i.e., 


`!%a = 
�!���S , (7.4)  


`!%1a = 
�!��C!�� − 1D�S1 . (7.5)  

In (7.4) and (7.5), !�� denotes the number of customers waiting in the queue given that all 

servers are occupied. Note that the distributional form of Little’s law does not hold for the 

sojourn times of the customers in the system, i.e., the sum of the customer’s waiting time and 

service time: in an �/�/� queue, customers may overtake each other during service, ensuring 

that assumption 2 in Theorem 1 (Bertsimas and Nakazato, 1995) is not necessarily satisfied.  

For the �/�/� queue, Tijms (2003) proposes an approximation for the generating function )�"�# of the unconditional number of customers waiting in the queue ��, see equation (9.6.22) 

in Tijms (2003). The approximation is based on the following two assumptions: (i) if fewer than � 

                                                      
10

 Where the letters AVA are the initials of the developers of the approximations. 
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servers are occupied in the �/�/� queue, that queue may be treated as an �/�/∞ queue, and 

(ii) when all servers are occupied, the �/�/� queue may be treated as an �/�/1 queue where 

the single server works at a rate that is � times as fast as the servers in the original �/�/� 

system. For both the �/�/∞ and the �/�/1 queue, the remaining service time of any busy 

server is distributed as the equilibrium excess time in a renewal process with the service times 

as interoccurrence times, see Section 9.6.2 in Tijms (2003). 

By taking the first derivative of )�"�# at � = 1, Tijms (2003) finds, without giving the derivation, 

an expression for 
���� as a linear function of 
���"�<¦#�. Note that it is nontrivial to find this 

function. Therefore, we describe how this can be done in Appendix A, where we also give the 

derivation for 
�!��"!�� − 1#� as a function for 
�!��C!�� − 1D"�<¦#�, i.e., equation (7.9). 

We now use the assumption that ÑÔ is the same in the �/�/� and �/�/� queue and Little’s 

Law to find that 

�z��
�z�"}(L#� = 
�¶z��
�¶z�"}(L#� = 
`¶�a
`¶�"}(L#a. We thus obtain the following linear relation 

between 
`!%a and 
`!%"�<¦#a: 


`!%a
`!%"�<¦#a = "1 − Ó#Ë0 �
`�a + Ó2 "1 + ��-1#, (7.6)  

where Ë0 is given by: 

Ë0 = � C1 − �}"�#D��
6 ��, (7.7)  

with �}"�# denoting the equilibrium excess distribution function of the service time, i.e., 

�}"�# = 1
`�a� C1 − �"\#D�\~
6 . (7.8)  

Note that Ë0 can be interpreted as the expectation of min"�}0, … , �}�#, where �} , � = 1, … , �, are 

i.i.d random variables with common probability distribution �}"�#. 

Similarly, we find a linear relation between 
�!��"!�� − 1#� and 
�!��C!�� − 1D"�<¦#�, and 

hence between 
`!%1a and 
`!%"�<¦#1a:   

`!%1a
`!%"�<¦#1 a = S1"1 − Ó#1Ó1 Ë1 + S"1 − Ó#2 "��-1 + 1#Ë0 + Ó14 "��-1 + 1#1 + Ó"1 − Ó#6 
`�ca
`�ac, (7.9)  

where Ë1 is given by:  

Ë1 = � �C1 − �}"�#D����
6 . (7.10)  
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Similar to Ë0, 2Ë1can be interpreted as the second moment of min"�}0, … , �}�#. This can easily be 

verified via partial integration of the right-hand side of (7.10), see, e.g., Tijms (2003), Section 

5.1.2.   

For 
`!%"�<¦#a and 
`!%"�<¦#1a, expressions can easily be found, see, e.g., Section 5.1.2 in 

Tijms (2003):  


`!%"�<¦#a = 
`�a�"1 − Ó#, (7.11)  


`!%"�<¦#1a = 2
`�a1�1"1 − Ó#1. (7.12)  

7.3.1.2 AVA2 

In this method, we estimate both 
`!%a and 
`!%1a as a weighted average of the waiting 

time moments in an �/�/� and an �/�/� queue, with the mean service time in the latter 

queues being equal to 
`�a. We use the squared coefficient of variation of the service time ��-1 

as weight when computing 
`!%a and V, defined by (7.15) below, as weight when computing 
`!%1a. We find:   


`!%a = "1 − ��-1#
`!%"���#a + ��-1
`!%"�<¦#a, (7.13)  


`!%1a = "1 − V#
`!%"���#1a + V
`!%"�<¦#1a. (7.14)  

We derive expression (7.13) from expression (9.6.24) in Tijms (2003). In contrast, we develop 

expression (7.14) ourselves, where we determine the expression for V, given in (7.15), such that 

it is exact for � = 1. Given that � = 1, we obtain analytical expressions for 
`!%a and 
`!%1a 

under any service time distribution by using the Pollaczek-Khintchine formula. Note that the 

expression for V is exact for both the �/�/� and the �/�/� queue, with V = 1 for 

exponential service times and V = 0 for deterministic service times. 

V = 110 − Ó �2"1 − Ó#
`�ca
`�ac + 3Ó
`�1a1

`�aý − 2 − Ó�. (7.15)  

The expressions for 
`!%"�<¦#a and 
`!%"�<¦#1a are given by the equations (7.11) and 

(7.12) respectively. We find expressions for 
`!%"���#a and 
`!%"���#1a from the LST of the 

unconditional waiting time in an �/�/� queue, see, e.g., Riordan (1962): 


����
`-aö.�� = "1 − ÑÔ#U"�Ó#���� − "�Ó − U#� Î"\ − U#��0
 F0 , (7.16)  

where \ = �Ó"1 − � #, and � , � = 0, … , � − 1, are the � roots of �� = ��Ö"��0#, with |� | ≤ 1 

and �6 = 1. Note that (7.16) does not use this latter root. The roots �  (� ≥ 1) can easily be 

computed recursively: starting with � "6# = 0, � "�20#
 can be computed as a function of � "�#

 until 

convergence occurs (see equation (14) in Janssen and Van Leeuwaarden, 2008). Moreover, the 
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roots �  are known in closed-form as an infinite sum (Janssen and Van Leeuwaarden, 2008). In 

Janssen and Van Leeuwaarden, we also find an expression for the waiting probability ÑÔ in the �/�/� queue, which we denote by ÑÔ"���#: 

ÑÔ"���# = 1 − �"1 − Ó#∏ "1 − � # ��0 F0 . 
By multiplying both sides of (7.16) by "�Ó#���� − "�Ó − U#�  and taking the second and third 

order derivatives of the resulting expression, we find that:  


`!%"���#a = 1SÑÔ ©�Ó1 − � + 12"1 − Ó# + t 11 − � 
��0
 F0 ª, (7.17)  


`!%"���#1a = �1Óc − "� − 1#"� − 2# + 3S"�Ó1 − � + 1#ÑÔ
`!%"���#a 3S1ÑÔ"1 − Ó#
+ 2S1ÑÔ t 11 − � t 11 − �Q

��0
QF 20

��1
 F0 . (7.18)  

7.3.2 Computation of 
`�a and 
`�¥a 

We now show how to compute the first two moments of the busy period. Both in this section, 

and in the computational experiments, we restrict ourselves to �/)ℎ&/� queues, i.e., queues 

where the service time has a phase type distribution with � phases. A phase type distribution 

characterizes the time until absorption in an absorbing Markov chain with a finite state space 

given that the chain starts in an initial transient (non-absorbing) state. Such a distribution is 

characterized by the tuple "Ý,�,�6#, where the Ý is a row vector of size � indicating the initial 

state probability vector, i.e., element � in Ý denotes the probability of starting in state � = 1, … , �, � is an �-by-� matrix denoting the transition rates among transient states, and �6 

is a column vector of size � denoting the transition from the transient to the absorbing state. 

The two-phased Coxian-2 distribution, for instance, can be characterized as follows:   

"Ý, , �6# = �"1 0#, v−r0 ¦r00 −r1w , u"1 − ¦#r0r1 x�. (7.19)  

The class of phase type distributions is rich in the sense that it allows us to cover a broad range 

of coefficients of variation for the service time distribution. In particular, the mixed generalized 

Erlang distribution, i.e., a distribution that is a generalized Erlang-� distribution with probability g�, � = 1, . . , �, allows us to model both variables with any value for ��-1. A special case of the 

mixed generalized Erlang distribution is the Coxian distribution, where the Coxian-2 distribution, 

for instance, can model a distribution with ��-1 ≥ 0.5, see, e.g., Marie (1980).  

The busy period can be seen as the first passage time of the queue-length process from the 

moment there are � customers in the system to that when there are � − 1 customers in the 
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system. Let ! denote the generator matrix of the queue length process. For an �/)ℎ&/�  

queue, ! can be characterized as follows. An element "�, �# in ! denotes the transitions from 

level � (with a level being the set of states with a queue length size �) to level �. 

! =

"
##
##
##
$
%06 %66 0%10 %00 %60⋱ ⋱

0   0   ⋯0   0   ⋯⋱ 0   ⋯0 %1��0
⋯ 0⋯

%0��0 %6��0 0%1� %0 %60 %1 %0
⋯0 ⋯%6 0 ⋯

   ⋯    0       %1⋯ 0    %0 %6 0⋱ ⋱ ⋱(
))
))
))
*

. (7.20)  

In !, %6 = Sã, %0 = −Sã ++ �� F0 , and %1 = + �6Ý� F0 , with ã being the identity matrix of size ��  and + � = �+…+�� F0 , see, e.g., Neuts (1981). Note that ! is a Quasi-Birth Death process 

that is homogeneous for levels strictly larger than �. This property also holds for the �/)ℎ&/1  

queue. Therefore, the busy period results of �/)ℎ&/1  also hold for �/)ℎ&/�  by setting %6, %0, and %1 as defined before. Neuts (1981, Section 3.3) studies the busy period of phase type 

single server queues using a matrix analytical approach. We shall now apply Neuts’ approach to 

derive the first two moments of the busy period in an �/)ℎ&/� queue. Let � denote an ��-by- ��  matrix where entry "�, � # denotes  the conditional probability that the queue length 

process, starting in level � + 1 (� ≥ �) at state � at time zero, reaches level � for the first time in 

state �′. Note that the entries in � are independent of � due to the homogeneous property of ! 

for levels greater than �. The matrix � is the minimal solution of the following quadratic matrix 

equation:  

� = �6 + �1�1, (7.21)  

where �6 = −"%0#�0%1 and �¥ = −"%0#�0%±. Note that �6 is the transition probability matrix 

that the queue-length process jumps from level � + 1 to �, � ≥ �, and �1 the transition 

probability matrix that the queue length process jumps from level � to � + 1, � ≥ �. The matrix � 

is stochastic, i.e., �� = �. Moreover, it is the unique solution of (7.21) if the queue is stable 

(Neuts, 1981, Th. 3.3.2). In the remainder of this section, we assume that the queue is stable, 

i.e., that Ó < 1. Therefore, � can be computed recursively. Let �� denote the estimate of � 

after iteration �. We then find: 

��20 = �6 + �1"��#1, � ≥ 1, 
where �0 = �6. The above equation is proven to converge, see Th. 3.3.1 in Neuts (1981). 

From �, we are able to derive the first two moments of the busy period �. Let 
¦0 denote a 

column vector of size ��  with the �-th entry being equal to the mean conditional busy period 
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given that the busy period starts in level � in state �. Similar to the way in which Neuts derives 

the busy period moments from �, we find the following expression for 
¦0 from Eq. (3.3.23)  

and (3.3.36) in Neuts (1981). 


¦0 = −"%6 + %0 + %6�#�0�. (7.22)  

Note that the matrix %0 + %1 + %0� is nonsingular since it can be written as a product of two 

nonsingular matrices, see Neuts (1981), Th. 3.3.3.  

Similar to 
¦0, let 
¦1 also be a column vector of size ��  with the �-th entry equal to the second 

moment of the conditional busy period that starts in level � in state �. We derive 
¦1 from eq. 

(3.3.26) in Neuts (1981) by using the fact that �� = �: 


¦1 = −2"%6 + %0 + %6�#�0"%6Ú0 + ã#
¦0, (7.23)  

where the matrix Ú0 is the minimal, unique and nonnegative solution of the following equation: 

Ú0 = −"%0#�0�+ �1"�Ú0 + Ú0�#. 
This matrix equation can be solved recursively by starting with an initial solution that is equal to 

the zero matrix and using an iteration procedure similar to that for computing matrix �. 

We now obtain the first two moments of the busy period by multiplying 
¦0 and 
¦1 by the 

joint distribution of the remaining service times on the servers when a busy period starts. At the 

start of a busy period, there is exactly one server that just started service. For the other � − 1 

servers, we use the common approximation, see, e.g., Tijms (2003), that the remaining service 

time on each server has a distribution equal to that of the remaining service time in equilibrium, 

where the service times are assumed to be independent among all servers. Given that the 

service times are phase-type distributed, we find the equilibrium distribution of the remaining 

service time on any server by considering the probability of being in each phase, since the time 

spent in any phase is exponentially distributed. Overall, the initial distribution of the joint 

phases of customers in service at the start of a busy period equals Ý⨂"⨂ �∗��0 F0 #, with �∗ equal 

to the following expression, see, e.g., Lemma 1 in Al Hanbali et al. (2012): 

�∗ = − 1
`�a Ý ⋅ ��0. 
7.4 Extensions to speed up the analysis methods 

As we show in Section 7.5.2.1, it can be time-consuming to estimate the two moments of the 

busy period, particularly in problem instances with many servers and service time distributions 
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with low values for ��-1 (corresponding to distributions with many phases). Therefore, we 

present three options for reducing the overall computation time. We describe the options in 

Sections 7.4.1 through 7.4.3.  

7.4.1 Option 1: Scaling the service time distribution 

We scale the service time distribution based on the number of servers when estimating the first 

two moments of the busy period. Specifically, we replace the �/)ℎ&/� queue by a �/)ℎ&/3 

queue where the service rate in each phase is 
�c times as fast as in the original system. As an 

example, for a 6-server queue where the service time has a Coxian-2 distribution, we now find: 

"Ý, É, �6# = �"1 0#, u−2r0 2¦r00 −2r1x , u2"1 − ¦#r02r1 x� (7.24)  

By limiting the number of servers to 3, we obtain small matrices when computing 
`�Wa and 
`�W1a. As a result, the computation times for 3-server instances remain below 1 second for 

service time distributions with up to 4 phases. We refer the reader to Section 7.5.2.1 for details. 

In contrast, when there are at least 6 servers, the computation times quickly explode. 

Therefore, we scale the service time distribution for instances with more than 3 servers. 

7.4.2 Option 2: Estimating 
`�ÆÛa and 
��ÆÛ¥� for class Û (§ < Y < N) through 

interpolation from those of class 1 and class Ü customers 

Our second option is to estimate the waiting time moments for class Y customers, 1 < Y < N, 

from those of class 1 and class N customers. Then, we do not require values for 
`�W�0a and 
`�W�01 a to compute 
`!%Wa and 
`!%W1a. In fact, we only need to compute 
`�]�0a and 
`�]�01 a to estimate the waiting time moments for the lowest priority class N. Note that this 

approximation can only be used for problem instances with at least 3 classes, as we require the 

waiting time moments of at least 2 classes, i.e., those for class 1 and class N, to estimate the 

moments for the remaining classes.  

We obtain 
`!%Wa and 
`!%W1a, 1 < Y < N,  from the moments of classes 1 and N as follows: 


`!%Wa = 80W
`!%0a + "1 − 80W#
`!%]a, (7.25)  


�!%W1� = 8 1W
`!%01a + "1 − 81W#
`!%]1a. (7.26)  

We obtain the interpolation factors 8RW (� = 1,2, Y ∈ H2, … , N − 1J) by solving equations (7.25) 

and (7.26) for the �/�/� queue. Let ÈW = ∑ Ó W F0  be shorthand notation for the utilization rate 

for classes 1 up to Y. Using the formulas for the waiting time moments per class in Kella and 

Yechiali (1985), we find the following expressions for 80W and 81W: 
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80W = "1 − È0#"1 − ÈW#"1 − ÈW�0# "1 − È]#"1 − È]�0# − "1 − ÈW#"1 − ÈW�0#"1 − È]#"1 − È]�0# − 1 + È0 . (7.27)  

81W = "1 − È0#1"1 − ÈW#1"1 − ÈW�0#c ∗
"1 − ÈWÈW�0#"1 − È]#1"1 − È]�0#c − "1 − ÈW#1"1 − ÈW�0#c"1 − È]È]�0#"1 − È]#1"1 − È]�0#c − "1 − È0#1"1 − È]È]�0# . (7.28)  

Note that 801 and 811 only depend on the values of ÓW"Y = 1, . . , N#. 

7.4.3 Option 3: Extrapolation for service time distributions with low variability 

When the service time variability is low (i.e., ��-1 ≤ 0.2), the approach of Section 7.2 may result 

in large computation times. Then, we must fit a phase type distribution with many phases to 

characterize the service time, e.g., an Erlang-10 distribution when ��-1 is 0.1. To gain efficiency, 

we may use extrapolation, i.e., we estimate the conditional waiting time moments for a 

distribution with a low ��-1 from those of distributions with larger values for ��-1.  

We use a least squares approach to fit a function on a set of support points, with a support 

point denoting the known waiting time moment value for a given ��-1 (and thus serving as input 

for extrapolation). Given that the conditional waiting time moments increase monotonically in ��-1, it is reasonable to fit a monotonically increasing function, such as a linear or exponential 

function, on the support points. 

7.5 Computational experiment and results 

We performed an experiment aimed at the validation of our methods. Section 7.5.1 contains 

our experiment objectives and design. We validate our analysis methods and extension options 

in Sections 7.5.2 and 7.5.3 respectively.  

7.5.1 Experimental design 

We use discrete-event simulation as a benchmark for validation. We use a replication-deletion 

approach with a warm-up period of 1 million arrivals and multiple runs of 1 million arrivals each. 

The threshold of 1 million ensures that we have observed an extensive number of events. After 

each run, we compute the relevant performance measures over all arrivals after the warm-up 

period (and not only the arrivals during the most recent run). Let 
`ø"�#a denote the value of a 

performance measure after the �-th run. The simulation stops once convergence occurs, i.e., 
`
"R#a�
`
"R�0#a
`
"R�0#a < 0.05% for all performance measures. For the two-class instances, the 

minimal number of runs per instance was 23, with the average being 51. Both the simulations 

and the analysis using our methods have been performed on a Dell optiplex 760 computer with 

Intel quad core, 2.83 GHz processor, with our methods implemented in Maple 14. 
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Our test bed consists of 648 problem instances, 324 with two customer classes and 324 with 

three classes. Table 7.1 shows the parameter values considered. The asterisks in the table 

pertain to the subset of instances on which extension option 3 (i.e., extrapolation) was tested 

(see Section 7.5.3.2). To obtain the class arrival rates SW, we compute the total arrival rate S as Ó�/
`�a and disaggregate S over the classes using the ratios SW/S. For the squared coefficient 

of variation ��-1 ≤ 0.5, we fit an Erlang- � distribution to 
`�a and ��-1. For ��-1 = 0.75, we use 

a Coxian-2 distribution with r0 = 1
`-a, ¦ = 6.þ�å6/, and r1 = r0¦, see Marie (1980). 

 Parameter Values for theoretical problem instances 

1 �  3*, 6, 9* 

2 Ó  0.8*, 0.9, 0.95* 

3 
`�a (hours) 1.25* 2.5, 5, 10* 

4 ��-1  0.25, 0.5, 0.75  

5 Division two-class instances v�.� ; �/� w  (0.1; 0.9)*, (0.3; 0.7), (0.5; 0.5)* 

6 Division three-class instances v�.� ; �/� ; �7� w (0.1; 0.2; 0.7), (0.2; 0.3; 0.5) , v0c ; 0c ; 0cw 

Table 7.1 Parameter values considered for theoretical problem instances. 

7.5.2 Method validation 

We first show in Section 7.5.2.1 that we obtain good results when a scaled service time 

distribution is used for finding the first two moments of the busy period (i.e., extension option 

3). Then, we validate AVA1 and AVA2 with scaling on problem instances with 2 and 3 customer 

classes in Section 7.5.2.2. 

7.5.2.1 The impact of scaling the service distribution 

We show the performance of AVA1 (see Section 7.3.1) both with and without scaling (the 

findings are similar for AVA2), where we only consider the cases with 2 classes and 6 servers. 

We omit the 9-server instances, because we are unable to estimate the busy period moments 

without scaling when ��-1 = 0.25, as the required matrices become too large to evaluate then.  

Table 7.2 shows the average and maximum relative error to simulation (rows ‘Avg. RE’ and 

‘Max. RE’ respectively) for the first two moments of �0 (the busy period when there are only 

class 1 arrivals) and !%1. We conclude that the mean busy period 
`�0a remains accurate 

under scaling. Also, although 
`�01a is less accurate under scaling, the greater inaccuracy has no 

impact on the second moment of the class-2 waiting time. Indeed, the relative error for 
`!%1a 

is comparable under scaling and non-scaling, whereas the errors for 
`!%11a are smallest under 

scaling. A closer observation of the results shows that 
`�0a and 
`�01a are generally 

underestimated (for each waiting time moment, 80% of all values are underestimated), whereas 

the first two moments of !%1 are still generally overestimated (60% on average). Clearly, the 

underestimation of 
`�0a and 
`�01a is compensated to some extent by the approximation we 
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use to compute 
`!%1a and 
`!%11a. The estimates for 
`!%1a remain accurate for a larger 

number of servers, as shown in Table 7.7 for three-class instances with 9 servers.   

 

`�§a 
��§¥� 
`�Æ¥a 
��Æ¥¥� 

 
Scaled Unscaled Scaled Unscaled Scaled Unscaled Scaled Unscaled 

Avg. RE 0.2% 0.3% 5.0% 0.5% 0.8% 0.9% 1.5% 1.7% 

Max. RE 0.6% 1.3% 10.5% 2.1% 3.1% 3.0% 5.8% 6.5% 

Table 7.2 Solution quality with and without scaling for method AVA1. 

Scaling is also very fast: the time to compute the busy period moments is at most 0.9 seconds. 

In contrast, the non-scaled variant has an average computation time of 17 minutes for cases 

with 6 servers and a ��-1 of 0.25. For the 9-server instances with ��-1 = 0.25, the resulting 

matrices are so large that we obtain memory errors. As a result, we even cannot compute the 

busy period moments without scaling. We therefore use scaling from now on. 

7.5.2.2 Validation of AVA1 and AVA2 

We evaluate the accuracy of AVA1 and AVA2 by comparison to Williams’ method (1980) and to 

simulation. Table 7.3 and Table 7.4 show the overall relative error to simulation for the mean 

conditional waiting time per class and the second moment of the conditional waiting time 

respectively. In both tables, ‘Will’ denotes the results using Williams’ method. 


`�Æ§a 
`�Æ¥a 
`�Æ8a 
AVA1 AVA2 Will AVA1 AVA2 Will AVA1 AVA2 Will 

2-class setting 
Avg. RE 0.8% 1.4% 13.1% 0.8% 0.6% 1.4% - - - 

Max. RE  3.5% 5.1% 29.2% 3.3% 3.8% 6.9% - - - 

3-class setting 
Avg. RE 0.6% 1.6% 14.2% 1.1% 1.2% 9.3% 1.0% 1.0% 1.0% 

Max. RE 2.9% 5.0% 29.4% 4.2% 4.8% 25.1% 5.1% 5.6% 5.6% 

Table 7.3 Relative error per method for the mean conditional waiting time per class. 


��Æ§¥� 
��Æ¥¥� 
��Æ8¥� 
AVA1 AVA2 Will AVA1 AVA2 Will AVA1 AVA2 Will 

2-class setting 
Avg. RE 2.0% 2.8% 24.8% 1.5% 1.5% 2.0% - - - 

Max. RE 8.5% 9.4% 55.0% 7.9% 8.3% 9.3% - - - 

3-class setting 
Avg. RE 1.8% 2.6% 27.4% 2.5% 2.3% 15.5% 2.2% 2.5% 1.4% 

Max. RE 7.6% 10.1% 55.6% 10.0% 10.0% 45.4% 12.3% 13.0% 7.6% 

Table 7.4 Relative error per method for the second moment of the conditional waiting time per class. 

In general, AVA1 and AVA2 both clearly outperform Williams’ method. The latter method gives 

particularly poor results for class 1 customers. For this class, Williams’ method always severely 

underestimates the first two moments of the waiting time, leading to an overestimation of the 
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service level (and hence risking that in practice insufficient servers will be deployed, such that 

SLAs are not met). In contrast, AVA1 and AVA2 overestimate 40% and 50% of class 1 waiting 

time moments on average in the two-class instances (the fractions are even higher in the three-

class instances). Still, William’s method works very well for the lowest priority class. In fact, that 

method is very accurate for the class 3 waiting time moments, even giving the most accurate 

values for 
`!%c1a. For all methods, accuracy is largest when estimating the mean waiting times 

compared to the second moments. Based on a further investigation of the results, we conclude:  

• AVA1 gives the most accurate results, especially on the class 1 waiting time moments. For 

the remaining classes, AVA1 gives comparable or better results than AVA2 and performs 

significantly better than Williams’ method, except for the lowest priority class (see below). 

The accuracy of AVA1 is influenced most by the squared coefficient of variation, an issue 

that we discuss in more detail later on. AVA1 is also most accurate when the low priority 

customers are a large fraction of the total demand rate, particularly for the second moment 

of the class-3 waiting time (with the average relative error decreasing from 3.6% to 1% as Sc/S increases from 
0c to 0.7). The value of � also influences the accuracy of AVA1, but does 

so in different ways for each class. In particular, the relative error increases with � for the 

class 1 waiting times, while those for class 2 decrease in the three-class instances. In the 

worst case, the average relative error per performance measure is around 4%.  

• For the lowest priority class, Williams’ method works very well under high loads, large 

fractions of class 1 customers and few servers. Then, the accuracy of Williams’ method is 

comparable to – and often better than – that of AVA1 and AVA2 for the conditional waiting 

time moments of class N. In the two-class instances, for example, the average relative error 

on 
`!%11a then equals 1.8% as opposed to the 3% error found with AVA1 and AVA2. 

• In general, the accuracy of AVA2 increases as ç decreases. For the lower priority classes, 

the relative errors are then equal to, or smaller than, those with AVA1.  

• AVA2 outperforms the other methods on class Ü when 9 is low. On the mean waiting time 
`!%]a "N = 2,3#, for instance, the relative error with AVA2 is 0.5%. The second best 

method is AVA1 with a relative error of 1%.    

We also find that all methods become much more accurate as ��-1 increases to 1. For AVA1, for 

instance, the average relative error decreases from 4.6% to 1% in the most striking case. 

Surprisingly, AVA2 does not outperform AVA1 for class 1 even when ��-1 is low. This finding 

does not change if we incorporate the fact that ÑÔ has a slightly different value for the �/�/� 

queue than for the �/�/� queue (which leads to slightly different weights when determining 

the conditional waiting times for the �/�/� queue from those of the former two queues). 

Table 7.5 shows the computation times for the two-class instances, which include the times 

needed for computing the busy period moments. The computation time is a fraction of a second 
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on average, and at most a few seconds. Williams’ method even has negligible computation time, 

since the waiting time moments are found using analytical expressions. Therefore, this method 

may be beneficial for estimating the conditional waiting time moments of class N. 

AVA1 AVA2 Williams 

Average time (sec) 0.21 0.14 0.00 

Maximum time (sec) 3.66 2.40 0.00 

Table 7.5 Computation times per method for the two-class instances. 

A final interesting finding from our analysis is that the squared coefficient of variation ��¶�1  of 

the conditional waiting time over all classes increases to 1 as the utilization rate Ó increases. 

Similarly, the squared coefficient of variation ��¶�ò1  of the conditional waiting time for the 

lowest priority class also tends to move to 1 with the increase of Ó. For the remaining classes, 

the squared coefficient of variation of the conditional waiting time remains constant in Ó. These 

findings apply to both AVA1 and AVA2. Further details can be found in Appendix B.  

7.5.3 Performance of extension options 2 and 3 

7.5.3.1 Performance of extension option 2: interpolation over customer classes 

Table 7.6 shows the relative error of AVA1 and AVA2 in estimating 
`!%1a and 
`!%11a, both 

under the original variant (i.e., using equations (7.2) and (7.3) of Section 7.2.2, denoted by ‘Orig’ 

in the table) and under interpolation (i.e., Section 7.4.2, denoted by ‘IntPol’ in the table). For the 

mean conditional waiting time 
`!%1a, the solution quality of both variants is similar. For the 

conditional second moment 
`!%11a, the results are clearly worse under interpolation.  

AVA1 AVA2 
`�Æ¥a 
��Æ¥¥� 
`�Æ¥a 
��Æ¥¥� 
Orig IntPol Orig IntPol Orig IntPol Orig IntPol 

Avg. RE 1.1% 1.3% 2.5% 4.7% 1.2% 1.1% 2.3% 4.5% 
Max. RE 4.2% 5.7% 10.0% 15.4% 4.8% 4.6% 10.0% 14.6% 

Table 7.6 Comparison of original analysis method to the interpolation variant for class 2 waiting time moments. 

Still, Table 7.7 shows that interpolation, combined with AVA1, may be effective if the number of 

servers is small. Interpolation also works well for a low utilization rate, both in combination with 

AVA1 and with AVA2.  
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Avg relative error AVA1 Avg relative error AVA2 
`�Æ¥a 
��Æ¥¥� 
`�Æ¥a 
��Æ¥¥� 
Orig IntPol Orig IntPol Orig IntPol Orig IntPol 

ç 

3 1.7% 0.7% 4.0% 1.6% 0.7% 1.0% 1.3% 2.4% 

6 1.0% 1.1% 2.3% 4.6% 1.2% 1.0% 2.5% 4.4% 

9 0.6% 2.2% 1.3% 7.8% 1.6% 1.3% 3.1% 6.6% 

9 

0.8 1.4% 0.7% 3.1% 3.1% 1.8% 0.8% 3.2% 2.9% 

0.9 1.0% 1.3% 2.3% 5.0% 1.0% 1.1% 2.1% 4.8% 

0.95 0.9% 1.9% 2.2% 6.0% 0.7% 1.4% 1.6% 5.6% 

Table 7.7 Comparison of original analysis method to the interpolation variant for specific parameter values. 

7.5.3.2 Performance of extension option 3: using extrapolation when service variability is low 

We use extrapolation to analyze distributions with ��-1 ∈ H0, 0.1, 0.2J, as computation times 

explode when the phase-type service time distributions have more than, say, 5 phases. To this 

end, we use at most four distributions to construct support points, i.e., those with ��-1 ∈H0.25, 1/3, 0.5, 1J. We consider all combinations of at least 2 support points. Overall, we thus 

have ∑ v4� w = 11ý F1  strategies, where a strategy denotes the set of support points considered.  

We test each strategy on 16 two-class problem instances. The tested parameter values have 

been marked by an asterisk in Table 7.1. We obtain our support points by using AVA1. For each 

combination of strategy and problem instance, we fit both a linear and an exponential function 

on the data points. A first look at the waiting time values shows that both the first and second 

moment of the conditional waiting time seem to be linear in ��-1, see Figure 7.1 for the first two 

moments of !%1 in one problem instance (the results are similar for other instances). For 

completeness, we also fit an exponential function on the data, as this function is also 

monotonically increasing. 

 

Figure 7.1 The first two moments of the conditional waiting time for class 2 (i.e., �Æ¥) as functions of ç:É¥ for a 

single problem instance. 
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Overall, accuracy is largest when we use support points with low squared coefficients of 

variation, particularly when estimating the second moment of the conditional waiting time per 

class. Table 7.8 shows the average relative error on 
`!%1a and 
`!%11a over all problem 

instances for the best strategies with 2, 3, and 4 support points (strategies 1, 2, and 3 

respectively), with ‘LIN’ denoting a fit with a linear function and ‘EXP’ that with an exponential 

function. The observations are similar for 
`!%0a and 
`!%01a. First, note that the accuracy of 

all strategies increase with ��-1: irrespective of the support points used or type of function 

fitted, the results are most accurate when ��-1 = 0.2. We also draw the following conclusions: 

• Accuracy does not necessarily increase if we use more support points. Indeed, accuracy 

then decreases for the second moment of the conditional waiting time, irrespective of the 

function type. We expect that the additional support points are increasingly far away from 

the points we wish to estimate. Hence, they do not provide further accuracy.  

• With two support points, we obtain similar accuracy when fitting a linear or exponential 

function. As the number of support points increases, however, the linear function is most 

accurate for the mean conditional waiting time, while the exponential function is most 

accuracy for the second moment of the waiting time. 

 Avg. RE !%1 Avg. RE !%11 
 ��-1 = 0 ��-1 = 0.1 ��-1 = 0.2 ��-1 = 0 ��-1 = 0.1 ��-1 = 0.2 
 Support points LIN EXP LIN EXP LIN EXP LIN EXP LIN EXP LIN EXP 

1 0.25 - 0.33 3% 4% 2% 3% 2% 2% 8% 7% 4% 4% 2% 2% 
2 0.25  - 0.33  - 0.5 3% 5% 2% 3% 1% 2% 13% 9% 6% 5% 2% 3% 
3 0.25 - 0.33 - 0.5 - 1 3% 8% 2% 5% 1% 2% 32% 16% 17% 9% 7% 4% 

Table 7.8 Aggregate relative errors under various strategies when estimating 
`�Æ¥a and 
��Æ¥¥�. 

Overall, we find the best results when using two support points that have a low squared 

coefficient of variation, where a linear and an exponential function provide similar accuracy. 

Still, the method is not sufficiently accurate for estimating performance when ��-1 = 0: then, 

the maximum relative error to simulation can amount to 15% and 20% under the exponential 

and linear function respectively. For larger values of ��-1, the accuracy is reasonable, with a 

maximum relative error of 10% for both types of functions. 

From Sections 7.5.2 and 7.5.3, we conclude that analysis method AVA1 generally is most 

accurate, with Williams’ method being a good alternative only for estimating the conditional 

waiting time moments of class N. We also found that the scaling of the service time distribution 

is accurate and fast, and is indeed a necessary tool for analyzing large problem instances in 

reasonable time. The remaining extension options work well under specific conditions. We now 

apply a subset of these methods – specifically AVA1 with scaling (extension option 1) and 
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interpolation (extension option 3) – to a case at a manufacturer of printing and copying 

equipment that has two types of customers. For simplicity, we do not consider further analysis 

methods, such as that of Williams. We also omit extension option 2 (i.e., the estimation of class 

2 waiting time moments from those of classes 1 and 3), since we consider a two-class setting. 

7.6 Case study 

We now consider one service region with two customer classes that each have distinct service 

level requirements on the overall (i.e., unconditional) waiting time: the waiting time for the 

premium class should always be below 3 hours, while the average waiting time for the non-

premium class should remain below 3.5 hours. Table 7.9 gives the remaining parameter values.  

 Parameter Values for case study Ó  0.93 
`�a (hours) 2.3662 ��-1  0.2161 

Division in classes "S0/S; S1/S#  (0.15; 0.85) 

Table 7.9 Parameter values for the case study. 

A service region is generally serviced by 4 engineers. In Section 7.6.1, we therefore first evaluate 

performance under that setting. We shall see that the service target for class 2 cannot be met 

then. In Section 7.6.2, we therefore consider two strategies for meeting all service level targets.  

7.6.1 Performance under the current capacity 

First, we compute the first two moments of the conditional waiting time per class. To this end, 

we use linear interpolation with the waiting time moments in an Erlang-5 distribution (with ��-1 = 0.2) and an Erlang-4 distribution (with ��-1 = 0.25) as support points11. We expect to find 

accurate results in this way, as our value for ��-1 lies between 0.2 and 0.25. Given 
`!%Wa and 
`!%W1a for both classes Y, we estimate both the distribution of %0 (the overall class-1 waiting 

time) and the mean overall class-2 waiting time 
`%1a (see Appendix C for details). Table 7.10 

shows the conditional waiting time moments per class and the performance on the overall 

waiting time targets. Although the class-1 requirement is almost always met, the mean waiting 

time for class 2 is far larger than 3.5 hours. 

 
`!%0a 
`!%01a 
`!%1a 
`!%11a PrH%0 ≤ 3 ℎ;\8UJ 
`%1a 

AVA1 0.54 0.50 6.10 72.65 0.999 5.18 

Table 7.10 The first two moments of the conditional waiting time per class and the performance on the service 

level targets (ç = <).   

                                                      
11

 Incidentally, we are also able to fit an Coxian–5 distribution to the service parameters.  
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7.6.2 Options for meeting the service level targets 

We have two options to reduce the class-2 waiting time, while ensuring that the class-1 waiting 

time never exceeds 3 hours. First, we can increase the number of servers. Alternatively, we may 

consider a more dynamic priority mechanism for service engineer assignment. As class 1 

customers always have priority over class 2 customers at present, it may be that the class-1 

waiting times are lower than required at the expense of the class-2 waiting times. Therefore, we 

prefer a mechanism where a new class 1 customer does not have priority over a class 2 

customer that has already been waiting for a certain amount of time. Still, system analysis 

quickly becomes complicated under such a priority mechanism. Therefore, we emulate a softer 

priority mechanism as follows: An arriving class 2 customer is treated as a class 1 customer with 

a probability ¦, with ¦ being any value between 0 and 1. The value of ¦ influences the waiting 

times of both classes: as ¦ increases, a fraction of class 2 customers experiences a lower waiting 

time, which might reduce the overall waiting time for that class. Conversely, class 1 customers 

now occasionally need to wait for an ‘upgraded’ class 2 customer, which can increase the class-1 

waiting times.  

We now use the following approach to determine values for � and ¦: 

1. Set � to its original value. In our case study � will thus equal 4. 

2. For the current value of �, compute the service level targets both when (A) no class 2 

customer is treated as a class 1 customer (corresponding to ¦ = 0), and when (B) all 

customers are treated equally, i.e., ¦ = 1.  

3. Depending on the outcome of the previous step, do the following:  

a. If the targets for both classes are met under either (A) or (B), STOP.  

b. If the target for class 1 is not met under (A), it will certainly not be met for ¦ > 0. 

Conversely, if the class-2 target is not met under (B), it will not be met for ¦ < 1. 

In both cases, increase � by 1 unit and proceed to step 2.  

c. If the class-1 target is met under (A), while the class-2 target is met under (B), it 

might be possible to meet both targets by setting ¦ > 0. Proceed to step 4. 

Otherwise, increase � by 1 unit and proceed to step 2.   

4. Use bisection to check whether a value for ¦ exists such that the service targets are 

satisfied for both classes. Proceed until either all targets are satisfied (we then STOP), or 

the class-1 target is no longer satisfied (we then increase �  by 1 and go to step 2).  

For our case study setting, we require 5 servers to meet both service level targets (Table 7.11). 

Increasing ¦ when � = 4 has no benefit here, as we still are not able to meet the class-2 target 

even when ¦ = 1. This is because the low priority customers comprise the bulk of the workload: 

reducing their waiting time has a strong impact on the waiting time of high priority customers. 
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� ¦ 
`!%0a 
`!%01a 
`!%1a 
`!%11a ÑÔ PrH%0 ≤ 3 ℎ;\8UJ 
`%1a 

4 0 0.54 0.50 6.10 72.43 0.85 0.999 5.18 

4 1 5.26 53.25 5.26 53.25 0.85 0.508 4.47 

5 0 0.44 0.33 1.39 3.56 0.45 1.000 0.63 

5 1 1.24 2.72 1.24 2.72 0.45 0.967 0.56 

Table 7.11 Performance on service level targets for various control options. 

Overall, the impact of ¦ depends on the type of service level considered, as shown in Figure 7.2. 

We base the figure mainly on the case study values (Table 7.9), with only ��-1 adjusted to 0.2 for 

simplicity. In the left figure, 
`%1a decreases slightly with ¦, while 
`%0a explodes for large 

values of ¦. The picture is different for the waiting time percentiles (where the figure on the 

right denotes per class the 90th percentile, i.e., the value ø such that PrH%W ≤ øJ = 0.9 for Y = 1,2). Specifically, the class-2 percentile function initially increases with ¦. This occurs 

because the variability of %1 may increase with ¦, since a fraction of class 2 customers is now 

treated as a class 1 customer (with a corresponding low waiting time), while the remaining class 

2 customers have an increasingly high waiting time.  

 

Figure 7.2 The impact of è on the mean waiting time and waiting time percentiles per class. 

The impact of ¦ also depends on the value of � and on the distribution of the total demand rate S over the classes, as shown in Figure 7.3 and Figure 7.4 respectively for the mean waiting times 

per class (the conclusions are similar for the waiting time percentiles per class). For clarity, we 

normalize the waiting times in Figure 7.3 on the mean waiting time when ¦ = 0 to show the 

relative impact on the waiting times. Such normalization is not needed in Figure 7.4, as all 

functions have the same waiting time value when ¦ = 1 (which corresponds to a single-class 

system). In Figure 7.3, we see that the impact of ¦ on 
`%0a is particularly large when � is small. 

In contrast, the impact of ¦ on 
`%1a is relatively constant for varying values of �. Conversely, 

the value of S0/S (‘frac1’ in Figure 7.4) has little impact on 
`%0a, whereas the impact on 
`%1a 

is significant: clearly, the use of ¦ as a priority mechanism is most beneficial for reducing 
`%1a 

in settings where S0/S is large. We note that the same does not hold for the class-2 waiting time 

percentile, since this function simply increases more strongly with ¦ then. 
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Figure 7.3 The impact of ç on the mean waiting times per class (with the waiting times normalized to the value 

when è = ±). 

 

Figure 7.4 The impact of ^§/^ on the mean waiting times per class (where ‘frac1’ denotes the value of ^§/^). 

Overall, our analysis methods enable a service provider to accurately estimate performance on 

various types of service levels. In particular, he is now able to characterize the distribution of the 

waiting time per class from the first and second moment of the conditional waiting time per 

class. The service provider can use these methods both to estimate service level performance 

for a given number of engineers and, conversely, to determine what service levels he can 

guarantee to his customers. In this case study, for instance, the service provider must consider 

whether it is beneficial to guarantee a mean waiting time of at most 3.5 hours to his lowest 

priority customers, since he then requires a fifth service engineer to satisfy all targets.   

7.7 Conclusions 

In this chapter, we considered an �/�/� queue with N classes and a non-preemptive service 

discipline. For this system, we developed two main methods to obtain the first two moments of 

the waiting time per class given that all servers are busy. We also presented three options for 

reducing computation times. We applied the various approaches to an extensive set of 

theoretical instances and to a case study at a manufacturer of printing and copying equipment. 

Our main conclusions are:  
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• Overall, AVA1 is the most effective analysis method. AVA1 generally gives the most 

accurate results, especially when estimating the conditional waiting time moments of the 

highest priority class. Furthermore, the computation time of the method is on average a 

fraction of a second and at most 4 seconds for settings with two customer classes. 

• In some settings, Williams’ method may be a good alternative for finding the conditional 

waiting time moments of the lowest priority class only. Williams’ method can be more 

accurate than AVA1 for the conditional waiting time moments of class N, for instance in 

systems with high loads or few servers. As Williams’ method is also very fast, it is a good 

alternative for class N waiting times, especially when there are 3 or more customer classes. 

• The scaling of the service time distribution is an effective option for reducing the analysis 

time. The scaling of the service time distribution generally leads to accurate results: under 

AVA1, the average relative error to simulation for any performance measure remains below 

2.5%, while the maximum relative error is 12.3%. Scaling also greatly reduces analysis time 

in settings with 6 or more servers and a complex service time distribution with 4 or more 

phases. Indeed, scaling is even necessary for analyzing queues with 9 or more servers. 

• The analysis methods allow a service provider to accurately estimate his performance on 

various types of service levels. Given that the methods compute both the mean and second 

moment of the conditional waiting time per class, a service provider is able to estimate the 

distribution of the overall waiting time besides the corresponding mean value. As a result, 

he is able to evaluate his performance on various types of service levels and, more 

importantly, determine what service levels he can feasibly promise to his customers. 

In the model considered in this chapter, all customer classes have the same service time 

distribution. Still, it might be that the service time distribution varies per customer segment, for 

instance if an engineer can service multiple types of systems that each require different service 

times, while the system type is not evenly distributed over the customer classes. It would thus 

be an interesting area of further research to allow the service time distribution to vary per 

customer segment. Such an extension will likely result in a significant increase in complexity. For 

instance, the distribution of the remaining service time of any busy server will now depend on 

the type of customer being served by that server.   

In this dissertation, we have considered various control options for applying differentiation in 

the service fulfillment process, both in spare parts supply and in the assignment of service 

engineers to customers. In the next chapter, we draw our key conclusions and discuss options 

for further research on a broader scale. 
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Appendix A: The first two queue length moments in an Ú/�/ç queue 

In this appendix, we briefly indicate how 
���� and 
���C�� − 1D� can be obtained from the 

generating function )�"�#, given by equation (9.6.22) in Tijms (2003). As mentioned before, we 

obtain 
���� and 
���C�� − 1D� by taking the first and second derivative in )�"�# in point � =1. Still, the resulting expressions initially seem very complex. Fortunately, these expressions 

consist of elements that can be greatly simplified, hence resulting in simple analytical 

expressions for 
���� and 
���C�� − 1D�. 

After differentiating )�"�# in � = 1, we find for 
���� and 
���C�� − 1D�: 


���� = �
`�a "1 − Ó#ÑÔ u fþ1 − S f0 + fý S f1"1 − S f0#1x, (7.29)  


���C�� − 1D� = �
`�a "1 − Ó#ÑÔ � f�1 − S f0 + 2 fþ S f1"1 − S f0#1 + 2 fý S1 f11"1 − S f0#c + fý S fc"1 − S f0#1�, (7.30)  

where f0 through f� pertain to the integrals listed in equations (7.31) to (7.36). Note that each 

integral can be greatly simplified, as shown below. Details on the derivations are given 

afterwards. 

f0 = � C1 − �"� ⋅ �#D�� = � C1 − �"\#D �\� = 
`�a��
6 .�

6  (7.31)  

f1 = � C1 − �"� ⋅ �#DS� ���
6 = S� "1 − �"\## \� �\� = S�1 � "1 − �"\## \ �\�

6
�

6 = S
`�1a2�1 . (7.32)  

fc = � C1 − �"� ⋅ �#DS1�1 ���
6 = S1�c� "1 − �"\# \1 �\�

6 = S1
`�ca3�c . (7.33)  

fý = � ©1 − = C1 − �"\#D�\~6 
`�a ª��0 C1 − �"�#D���
6 = 
`�a� . (7.34)  

fþ = � ©1 − = C1 − �"\#D�\~6 
`�a ª��0 C1 − �"�#D S� ���
6 = Ó ⋅ Ë0, (7.35)  

f� = � ©1 − = C1 − �"\#D�\~6 
`�a ª��0 C1 − �"�#D S1�1 ���
6 = 2S ⋅ Ó ⋅ Ë1, (7.36)  

where Ë0 and Ë1 are defined by (7.7) and (7.10) respectively. 

The rewriting of f0 is trivial. For f1, we find that = "1 − �"\## \ �\ = 12
 >�2?∞0  through 

integration by parts. In a similar way, we obtain fc. For fý, we first rewrite 1 − = C0�-"P#DOPìï 
`-a  as 

@"�# (i.e., @"�# = 1 − = C0�-"P#DOPìï 
`-a ). We then find:  
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fý = −� C@"�#D��0 ⋅ @ "�#�
6  
`�a �� = −
`�a ¡C@"�#D�� ¢6

� = 
`�a� . 
Finally, to obtain simple expressions for fþ and f�, we again substitute 1 − = C0�-"P#DOPìï 
`-a  by @"�#. 

We find for fþ: 

fþ = −� C@"�#D��0 ⋅ @ "�#�
6 ⋅ 
`�a S� �� = −S
`�a� � ⋅ C@"�#D��0 ⋅ @ "�# ���

6 . 
By integrating the latter integral by parts, we find the simplified expression for fþ. In a similar 

way, we find the expression for f�. 

By dividing the simple expressions for 
���� and 
���C�� − 1D� by those for 
���"�<¦#� and 
���C�� − 1D"�<¦#� respectively, we obtain expressions (7.6) and (7.9) in Section 7.3.1.1.  

Appendix B: The influence of the utilization rate on the squared 

coefficient of variation of the conditional waiting time 

As mentioned in Section 7.5.2.2, we observe a relationship between the utilization rate Ó and 

the squared coefficient of variation of the conditional waiting time, both over all classes and for 

the lowest priority class. Figure 7.5 and Figure 7.6 summarize the results under AVA1 for the 

two-class and three-class problem instances respectively. The results are similar for AVA2.  

Note that the squared coefficient of variation �¶�1  of the overall waiting time increases to 1 as Ó 

increases. The squared coefficient of variation �¶�ò1  of the lowest priority class N also moves to 

1 as Ó increases, with �¶�ò1  usually decreasing with Ó. For the remaining classes Y, the squared 

coefficient of variation �¶�Í1  is constant in Ó. Still, the value of �¶�Í1  for those classes increases 

with the coefficient of variation of the service time. 
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Figure 7.5 The relationship between the utilization rate 9 and the squared coefficient of variation of the 

conditional waiting times for two-class instances. 

 

Figure 7.6 The relationship between the utilization rate 9 and the squared coefficient of variation of the 

conditional waiting times for three-class instances. 
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Appendix C:  Finding the distribution of the overall waiting time, 

including the first two moments  

Given that we have ÑÔ (i.e., the delay probability) and the first two moments of !%W, we can 

obtain the first two moments of the unconditional waiting time %W as follows:  


`%Wa = ÑÔ
`!%Wa (7.37)  


�%W1� = ÑÔ
�!%W1� (7.38)  

By fitting the first two moments of !%W to a gamma distribution, we can also approximate the 

distribution of !%W, and hence that of %W. For the distribution of !%W we find: 

)8H!%W ≤ <J = <W�0�� (A ÐWΓ"Y#  , (7.39)  

with Ð = � 
`!%Wa
`!%W1a − $`!%Wa1�
�0

 , and (7.40)  

Y = 
`!%Wa1

`!%W1a − $`!%Wa1 (7.41)  

Subsequently, we find the distribution of %W from that of !%W:  

)H%W = 0J = 1 − ÑÔ  (7.42)  

)H%W ≤ <J = )H%W = 0J + )H!%W ≤ <JÑÔ (7.43)  
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Chapter 8  

Conclusions and further research 

In this chapter, we draw our key conclusions, give guidelines for applying differentiation policies 

in practice, and discuss areas for further interesting research.  

8.1 Conclusions 

In this section, we reflect on the research objectives of Section 1.8.2. We start with the first 

main research objective:  

1. To determine whether and when throughput time reduction can lead to large cost 

savings in general multi-echelon multi-indenture spare parts networks.  

We consider throughput time reduction in Chapter 2. We first developed expressions for the 

marginal backorder reduction at operating sites as a function of the marginal reduction of 

throughput times in the network. As a result, we are able to estimate the marginal impact of 

throughput time reduction on system availability. Subsequently, we used these impact 

estimates to develop an efficient heuristic for simultaneously optimizing spare part inventories 

and repair and transportation throughput times. Using this heuristic, we find significant cost 

reductions compared to the standard VARI-METRIC method with fixed throughput times: 20% 

on average in an extensive numerical experiment with theoretical problem instances. We also 

tested the model on a case study at Thales Netherlands, where we find a net saving of 5.6%. The 

gap in savings between the theoretical cases and the Thales case is caused by the fact that 

Thales has limited options for throughput time reduction, especially at the shore and at the 

operating sites (i.e., the frigates), whereas in general it is most profitable to reduce throughput 

times for LRUs downstream in the supply chain.  

Now, we discuss the research objectives that pertain to differentiation in spare parts supply on 

both an item level and a customer level. We considered three differentiation strategies besides 

the critical level policy: selective emergency shipments (research objective 2), selective lateral 

transshipments (research objective 3), and dedicated customer stocks (research objective 5). 

Furthermore, we considered combinations of differentiation strategies (research objective 6). 

Under each strategy (or combination of strategies), we analyzed the resulting system using 

continuous-time Markov chains. The system analysis under dedicated stocks with emergency 

shipments was considered as research objective 4. For multi-item optimization, we used an 

approach similar to Dantzig-Wolfe decomposition. Note that the application of this approach 
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was far from trivial both for the selective transshipment model and the dedicated stocks model 

with emergency shipments, as system performance then depends on the stock levels at all stock 

points in the system. Also, in the selective transshipment model we have distinct service level 

requirements for each customer class and warehouse, making it more difficult to find a near-

optimal integer solution.  

We draw separate conclusions on each research objective.  

2. To determine whether and when the selective use of emergency shipments is an effective 

control option for applying service level differentiation in spare parts supply 

In Chapter 3, we show that the selective emergency shipment model has added value as a 

differentiation tool, with savings of 4.4% on average over a one-size-fits-all policy where all 

customers receive uniform service. The average savings even increase to 11.7% when we have 

many low value items, as emergency shipments are very expensive in that case. The selective 

emergency shipment model then uses full backordering for many items. In contrast, a critical 

level policy with emergency shipments keeps very high stock levels then to avoid emergency 

shipments. As a result, the selective emergency shipment model outperforms the critical level 

policy in that setting and in other settings where emergency shipments are not beneficial.  

3. To determine whether and when the selective use of lateral transshipments is effective 

for applying service differentiation in spare parts supply.  

In Chapter 4, we extend the selective emergency shipment model (Chapter 3) to consider lateral 

transshipments for premium customers only. We then show that selective transshipments are 

an effective tool for differentiation. On average, such transshipments are used for 96% of all 

item-warehouse combinations. We give further details when discussing research objective 6, 

specifically the combination of selective transshipments with selective emergency shipments. As 

in Chapter 3, we further find that it is beneficial to consider backordering as a shipment option 

besides emergency shipments: on average, emergency shipments for both classes are only used 

for 25% of the warehouses and items. For the remaining item-warehouse combinations, 

backordering is at least used for the non-premium class (and often for both classes). Also, we 

find that expensive shipment options are reserved for high value items if a warehouse is out of 

stock: requests for inexpensive items are backordered, and those for more expensive items are 

met through lateral or emergency shipments. 

4. To find an accurate and fast approach for analyzing a two-echelon model with lost sales. 

As discussed in the introduction, we obtain a two-echelon model when dedicated stocks are 

allowed as a differentiation tool: at the higher echelon level we find warehouse stock and at the 

lower level we have customer stock points. Under lost sales, no suitable approaches yet existed 
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to analyze such a two-echelon model: existing approaches use simple approximations to analyze 

the warehouse and ignore the fact that the demand rate at the warehouse depends on the 

stock levels at the customers. By using a more accurate analysis of the warehouse arrival rates 

and pipeline, we developed a highly accurate model in Chapter 5 that works well in a large 

number of settings: deviations to simulation remain below 0.6% for 90% of all performance 

measure observations. Our approach is also fast (at most 47 milliseconds), making it a suitable 

building block for optimizing a multi-item system with dedicated stocks. 

5. To determine whether and when the use of dedicated customer stocks is an effective 

control option for applying service level differentiation in spare parts supply. 

We consider the use of dedicated stocks for service level differentiation in Chapter 6. In a 

computational experiment, we compared this differentiation strategy to both the one-size-fits-

all approach and the critical level policy, both for a system under full backordering and one with 

emergency shipments. We show that dedicated stocks have significant added value, with 

average savings of 13% and 5% under backordering and emergency shipments respectively. 

Also, the savings are of the same order of magnitude as those found with the critical level 

policy. Dedicated stocks are particularly beneficial when the shipment time to customers is 

large. Indeed, it might even be necessary to keep dedicated stocks in that case to meet high 

service requirements. Under emergency shipments, both dedicated stocks and critical levels 

should only be used in settings with many expensive items.  

6. To investigate the added value of using multiple control options simultaneously for 

differentiation in spare parts supply. 

We discuss combinations of differentiation strategies in Chapters 3, 4, and 6. In Chapter 3, we 

show that large savings can be obtained by jointly using selective emergency shipments and 

critical level policies: the savings of that combination over a one-size-fits-all approach are 13.9% 

on average. Compared to the selective emergency shipment model, we also find large savings 

(14% on average) by also using selective lateral transshipments for differentiation (see Chapter 

4). However, the combination of the latter strategy with critical levels does not result in 

additional gains, which we also show in Chapter 4. A more detailed observation shows that the 

first two combinations result in effective differentiation strategies (with the overall waiting 

times close to their respective targets). Therefore, the addition of critical levels to the selective 

transshipment model does not lead to additional benefit. The added value of combining 

dedicated customer stocks with the critical level policy is also small, as shown in Chapter 6.   

Our final research objective pertains to the use of priority mechanisms for applying 

differentiation in assigning service engineers to customers.  
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7. To determine the impact on service level performance of using priority mechanisms for 

assigning service engineers to customers.  

We discuss this objective in Chapter 7, where we consider a multi-class system with multiple 

servers where high priority customers have non-preemptive priority over lower priority 

customers. For this model, we developed two main methods to obtain the first two moments of 

the waiting time per customer class given that all servers are busy, which in turn allow us to 

estimate the overall waiting time distribution per class. Furthermore, we presented three 

options for reducing the computation time. Overall, we find that analysis method AVA1 

combined with scaling of the service time distribution results in high accuracy and fast 

computation times. When applied to a case study, this combination accurately estimated the 

performance on various types of service levels. Also, the method serves as a useful tool for 

service providers to set realistic service level targets for their customers. 

8.2 Guidelines for applying differentiation policies  

In this dissertation, we have presented various control options for implementing service 

differentiation in the fulfillment process. We now offer guidelines on applying these 

differentiation policies in practice, where we focus on the policies related to spare parts supply. 

Our aim is to globally indicate how the suitability of a policy depends on the characteristics of 

the items being considered. Naturally, a service provider must also consider the influence of 

other parameters such as replenishment times when deciding what policies to use.   

Figure 8.1 shows which policies should be considered for varying types of items. In general, we 

see clear links between item type and policy characteristics,. First, notice that the item value 

influences the shipment mode used. When the item value is low, holding costs are low as well. 

As a result, emergency shipments are very expensive and should not be used. As the item value 

increases, it becomes increasingly beneficial to use lateral transshipments and emergency 

shipments. Second, we find that the demand rate influences the mode of differentiation. For 

slow movers, the most suitable differentiation option – if any – is selective transshipments. We 

then only need to keep stock at a few locations and use transshipments to satisfy premium 

requests at other locations. If stock only needs to be kept at one location, the system in fact 

simplifies to a two-echelon model where the depot also serves customers directly. Still, even 

lateral transshipments may be too expensive when the item value is also low. Then, the only 

beneficial option is full backordering. Notice that the critical level policy also has little added 

value when an item’s demand rate is low: as we keep little stock of that item, we have few 

options for applying differentiation in that way. Conversely, for fast movers it is beneficial to 

consider the critical level policy. The benefit of the remaining differentiation modes depends on 

the item value as well: dedicated stocks should be limited to low value items, whereas selective 

emergency shipments are useful for high value items. 
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Figure 8.1  Suitability of differentiation policies for item types. 

Figure 8.1 gives a general relationship between item characteristics and policy suitability. In 

order to specify what policy must be used for a specific item, we also require the remaining 

parameters of a problem instance. For instance, if regular replenishment times are very large 

compared to emergency shipment times, the use of emergency shipments might greatly limit 

the stock levels that must be kept. As a result, this shipment mode might also be used for items 

of moderate value. Conversely, emergency shipments will only be used for the highest value 

items, if any, when regular replenishment times are sufficiently short to meet the service level 

targets.   

8.3 Discussion and further research areas 

We now discuss areas for further research. As we performed research at a tactical planning 

level, we first discuss extension options at this level. Subsequently, we discuss extension options 

at the operational and strategic level.  

8.3.1 Extensions at the tactical level 

In practice, a service provider may have three or four customer segments. In that case, the 

service differentiation models need to be extended to more than two customer classes. Such 

an extension can occur in two ways: either (i) at a system level, or (ii) at an item level. At a 

system level, we may opt to have at most 2 customer classes for each item policy – which 

simplifies system analysis for an item policy – while the assignment of customers to classes may 

differ across item policies. The optimization approach then remains similar as before, we simply 
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need to account for the assignment of customers to classes when selecting item policies and we 

must consider more service level restrictions (i.e., one for each class). Note that a customer 

might only be assigned to the high priority class for a subset of items. Then, decisions are also 

required at an operational level to determine whether a customer order for multiple items 

which have distinct priorities should be treated as a high priority or a low priority order. It is also 

possible to extend the models at an item level, i.e., by allowing more than 2 customer classes 

per item policy. Such an extension is not straightforward under (partial) backordering with 

priority backorder clearing, especially when combined with a critical level policy. Then, each 

class adds an extra dimension to the state space of the Markov chain to keep track of both the 

pipeline and the number of backorders per class. Incidentally, we doubt whether an extension 

at item level will result in serious additional savings: Kranenburg and Van Houtum (2008) have 

shown that a smart assignment of customers to classes (with at most 2 classes per item policy) 

can result in savings that are close to those of allowing 5 classes per item policy.   

A second interesting area for further research is on the incorporation of state information 

when selecting a shipment mode. For instance, if we know that the pipeline to a warehouse 

contains many items, it might be both faster and cheaper to backorder incoming demand 

instead of using expensive lateral transshipments and emergency shipments. As a result, we 

might reduce system costs (either by keeping lower stock levels or by limiting expensive 

shipment modes). However, to do so, information on the system state must be available. In 

practice, however, such information often is not available, either because it is not monitored or 

because it is not easily accessible. Furthermore, the inclusion of state information will greatly 

complicate system analysis, and hence system optimization.  

The incorporation of state information could also be interesting when assigning service 

engineers to customers. Specifically, it would be interesting to consider a dynamic priority 

assignment mechanism that considers both the priority and current waiting time of customers 

when deciding where to send an engineer. In Chapter 7, for instance, we have seen that a static 

priority mechanism where premium customers always have priority over non-premium 

customers can be undesirable, since the waiting times for non-premium customers might 

become excessively large. In such a setting, it might be better to ‘upgrade’ a non-premium 

customer to a premium status once he has waited for more than certain amount of time. 

Naturally, system analysis will be greatly complicated under such priority mechanism. Also, 

research must also be done on the circumstances under which such a priority mechanism is 

effective: in Section 7.6, we considered a simple mechanism where an arriving non-premium 

customer could become a premium customer with a probability ¦, with ¦ being a decision 

variable. Then, we found that it was not always interesting to set ¦ > 0, particularly in settings 

with relatively few premium customers and few servers.  
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The possibilities for further research mentioned so far pertain to the research described in this 

dissertation. However, we see further interesting research areas that do not pertain to spare 

parts or service engineers. In particular, we still see options for considering preventive 

maintenance as a control option. In practice, preventive maintenance often occurs at the same 

time as corrective maintenance, i.e., a service engineer replaces components that are likely to 

fail soon when he comes to repair a component that has already failed. However, there are 

benefits both for the customer and for the service provider to using preventive maintenance as 

a control option: a key advantage of preventive maintenance is that it can be planned, as 

opposed to corrective maintenance. Therefore, preventive maintenance can be scheduled at 

times that are convenient for all parties. Also, the service provider can then ensure that all 

required resources are available at the time that maintenance must be performed, which 

minimizes system downtime. We even see possibilities for using preventive maintenance as a 

differentiation tool in settings with multiple customer classes. For instance, we might choose to 

monitor the systems of premium customers and perform preventive maintenance before a 

failure occurs. In contrast, for non-premium customers we either do not perform preventive 

maintenance or do so less frequently than for premium customers to limit monitoring and 

preventive maintenance costs. To use such a differentiation approach, the service provider must 

be able to monitor the system’s state to detect impending failures. Also, the benefit of such an 

approach will depend on the costs for preventive maintenance relative to the benefit of fewer 

corrective maintenance visits.   

Finally, to our knowledge little research has been performed that considers multiple resources 

or processes simultaneously. For instance, in spare parts models the availability of other 

resources such as service engineers is generally ignored. However, maintenance can only be 

performed if all resources are available. Similarly, the use of preventive maintenance as a 

control option will influence the time at which engineers and spare parts are needed. By 

considering multiple resources and processes, we can better estimate how long a system is 

down and hence whether we attain our guarantees on uptime.  

8.3.2 Extensions at the operational level 

In this dissertation, we have described various control options for service fulfillment at a tactical 

level. Still, service providers must implement these control options at the operational level as 

well. One research area is the operational planning of resources: given the quantity and 

deployment of resources, one must determine how to use these resources for system upkeep. A 

key issue is that a service provider may use his resources in a way that deviates from the 

decisions made at a tactical level. For instance, if the service provider knows that there is only 

one unit of an item in stock at the warehouse – with this unit reserved for a premium customer 

– he may still opt to use the unit for an incoming non-premium request if he knows that a new 

unit will arrive shortly thereafter. Similarly, if a non-premium customer has been waiting for an 
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engineer for a very long time, it might be beneficial to assign the next available engineer to that 

customer instead of to a newly arriving premium customer. Further research should thus show 

under what circumstances such deviations are beneficial. Note that the use of resources will 

depend on the operational management of service contracts, taking into account the current 

performance in the ongoing service period For instance, consider the setting where a service 

provider has only one unit of a part requested by two customers. Overall, the availability 

requirements of these customers may be 98% and 95% respectively. However, when the end of 

the contract period is near, it may be that the attained availability for the first customer is 100% 

(i.e., that customer has had no failures), whereas the availability for the second customer is 

93%. Then, it is likely more logical to provide the part to the second customer. 

8.3.3 Extensions at the strategic level 

We first see opportunities for extending research on the development of service contracts. 

Specifically, if a service provider needs to draw up a service contract for a new customer, he 

must be able to define the correct type of service level agreements as well as the correct values 

of service levels that he can agree upon given his current set of service contracts and his service 

organization. This issue still remains far from trivial: one must then know the frequency at which 

systems fail and the resources/costs required to repair these failures. In terms of resources, we 

have considered the costs related to spare parts and service engineers. As shown in Chapter 1, 

however, a service provider requires many more resources, such as those for diagnosis and 

preventive maintenance. Furthermore, many service providers have little insight in the failure 

rates of their systems, even for their current contracts.  

A second option for further research is the consideration of performance indicators that better 

match with customers’ needs. In the spare parts models considered in this dissertation, and 

those considered in the literature in general, the performance targets pertained to mean values 

(e.g. a mean overall waiting time). In practice, however, customers generally wish to know that 

the waiting time will be reasonable each time the system fails. A target will then be required on 

the distribution of the waiting time, as we considered in the service engineer model of Chapter 

7. To our best knowledge, only a few papers, such as Caggiano et al. 2007, have considered such 

targets before in spare parts models. A target on the distribution of a performance indicator will 

also be necessary if we aim to determine performance over a specific interval as opposed to a 

long-term average. Such targets on performance over an interval are often seen in practice, 

where customers are interested, for instance, in system availability over a year. However, to 

analyze performance over an interval, we require models that are highly complex, see e.g. Al 

Hanbali and Van der Heijden (2011), who estimate the distribution of interval availability (i.e. 

system availability over a specific interval). In conclusion, various areas for interesting research 

remain. 
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Samenvatting 

Voor kapitaalintensieve bedrijven en organisaties zijn de continue beschikbaarheid en het 

ongestoord functioneren van productiefaciliteiten en systemen van cruciaal belang. Als 

voorbeelden valt te denken aan medische apparatuur, defensiematerieel, vliegtuigen en 

hoogwaardige productiesystemen. Een storing aan deze systemen kan leiden tot een fors 

productie- en inkomstenverlies of tot het ontstaan van onveilige situaties. Goed onderhoud en 

het snel verhelpen van eventuele storingen van deze systemen zijn dus van groot belang. De 

gebruikers van deze systemen besteden het onderhoud in toenemende mate uit aan de 

systeemfabrikant, waarbij afspraken over de te leveren diensten worden vastgelegd in een 

servicecontract. Een dergelijk contract bevat vaak zogenaamde service level agreements die het 

gewenste serviceniveau aangeven. Voorbeelden hiervan zijn een minimale beschikbaarheid van 

het systeem over een bepaald tijdsinterval, een maximale reactietijd in het geval dat een storing 

optreedt, en een maximale tijd tussen melding en oplossing van de storing.  

Als er een storing optreedt, wijst de systeemfabrikant (of een extern onderhoudsbedrijf) een 

service engineer toe aan de klant om de storing te verhelpen. Vaak maakt de engineer hiervoor 

gebruik van reserve-onderdelen, waarbij onderhoud plaatsvindt door een defect onderdeel in 

het systeem te vervangen door een nieuw onderdeel (repair by replacement). Het defecte 

onderdeel kan zelf vaak worden gerepareerd door een defect subonderdeel te vervangen, 

enzovoorts. Systemen hebben doorgaans een dergelijke meerlaagse productstructuur, in de 

literatuur ook wel bekend als een multi-indenture structuur. Om tijdig een defect onderdeel te 

kunnen vervangen, beschikt de fabrikant vaak over een netwerk van voorraadpunten waar 

reserveonderdelen bewaard kunnen worden. Om schaalvoordelen binnen het voorraadbeheer 

(“risk pooling”) tot stand te brengen is een centrale voorraadlocatie nuttig, terwijl anderzijds 

verschillende lokale magazijnen vlakbij de gebruikers nuttig zijn om korte levertijden te kunnen 

realiseren. Dit leidt doorgaans tot een combinatie van centrale en lokale voorraadpunten, 

waarbij centrale magazijnen vooral dure langzaamlopers op voorraad houden en lokale 

magazijnen vooral goedkope snellopers. De voorraden bij de lokale magazijnen wordt dan 

aangevuld vanuit een centraal magazijn. We spreken in dat geval van een multi-echelon 

structuur. Een aantal voorraadpunten wordt ook gebruikt om (vooral dure) defecte onderdelen 

te repareren. De beschikbaarheid van engineers en onderdelen bepaalt in hoge mate de tijd die 

nodig is om een storing te verhelpen, en dus de kans om het afgesproken serviceniveau te 
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halen. Natuurlijk zijn er kosten verbonden aan alle mensen en middelen die nodig zijn voor de 

instandhouding (service engineers, voorraadpunten, voorraden, reparatie, transport, etc.).  

In dit proefschrift onderzoeken wij verschillende logistieke opties om te kunnen voldoen aan 

prestatieafspraken die in servicecontracten zijn gemaakt. Hierbij richten wij ons met name op 

situaties waarin het gewenste serviceniveau per klant verschilt: de éne groep klanten kan 

behoefte hebben aan een duur servicecontract dat een hoog serviceniveau biedt, terwijl andere 

klanten tevreden zijn met een goedkoper contract en een lager serviceniveau. Op dit moment 

bestaan er nog weinig goede methoden om met een dergelijke differentiatie in serviceniveaus 

om te gaan: het leveren van een uniforme hoge service aan alle klanten is duur en biedt 

standaardklanten een te hoge service, mogelijk ten koste van klanten die juist hogere eisen 

stellen. Differentiatie kan in theorie wel tot stand worden gebracht door voorraad te reserveren 

voor hoge prioriteitsklanten (de zogenaamde critical level policy). Helaas blijkt deze strategie in 

de praktijk slecht werkbaar te zijn, onder andere omdat service engineers niet bereid zijn om 

onderhoud uit te stellen voor een standaardklant als een onderdeel feitelijk beschikbaar is. 

Daarnaast vinden leveranciers het doorgaans lastig om aan klanten te moeten melden dat een 

benodigd onderdeel weliswaar op voorraad is, maar dat ze dat onderdeel op basis van een 

relatief goedkoop contract niet willen uitleveren.  

Het onderzoek in dit proefschrift is verdeeld in drie delen. Het eerste deel, beschreven in 

hoofdstuk 2, betreft de beschikbaarheid van onderdelen waarbij differentiatie alleen op 

itemniveau wordt toegepast. Het tweede deel, beschreven in hoofdstukken 3 tot en met 6, 

betreft de beschikbaarheid van onderdelen met differentiatie op zowel item- als klantniveau. 

Het laatste deel, beschreven in hoofdstuk 7, betreft de beschikbaarheid van service engineers 

waar een prioriteitsmechanisme gebruikt wordt bij het toewijzen van engineers aan klanten.   

In hoofdstuk 2 onderzoeken wij differentiatie op itemniveau bij het leveren van onderdelen. Wij 

beschouwen een multi-indenture multi-echelon model waarin zowel de voorraadniveaus op 

verschillende locaties als de doorlooptijden voor het repareren en vervoeren van onderdelen 

beslisvariabelen zijn. In een theoretisch experiment laten wij zien dat de besparingen van dit 

model gemiddeld 20% kunnen zijn ten opzichte van een standaard VARI-METRIC model waarin 

de doorlooptijden vast staan. Verder vonden wij een besparing van 5.6% in een case study bij 

Thales Nederland, waar de mogelijkheden voor doorlooptijdverkorting beperkt waren.  

In de hoofdstukken 3 tot en met 6 onderzoeken wij differentiatie op zowel item- als klantniveau 

bij het leveren van onderdelen. Wij richten ons op drie differentiatietechnieken:  

• Het selectief gebruik van spoedleveringen: Doorgaans bestaat het netwerk om 

voorraden van onderdelen aan te houden uit een centraal magazijn en meerdere lokale 

magazijnen die elk hun eigen verzorgingsgebied (regio) hebben. Een spoedlevering 
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houdt in dat een klant snel (en duurder) wordt beleverd vanuit een centraal 

voorraadpunt (hetzij het centrale magazijn of de producent van het onderdeel) als het 

“eigen” lokale magazijn buiten voorraad is. 

• Het selectief gebruik van laterale leveringen: Net als spoedleveringen, worden laterale 

leveringen alleen gebruikt als een klant in een bepaalde regio niet vanuit zijn eigen 

lokale magazijn bediend kan worden. Bij een laterale levering wordt de klant echter 

beleverd vanuit een lokaal magazijn van een naburige regio. Vaak is een laterale levering 

zowel sneller als goedkoper dan een spoedlevering. Deze levering onttrekt echter wel 

voorraad aan het naburige magazijn, waardoor dit laatste magazijn vervolgens wellicht 

niet aan alle klantvraag in de eigen regio kan voldoen. 

• Het aanhouden van (deel)voorraden bij klanten: Een fabrikant kan er ook voor kiezen 

om van bepaalde snellopende items wat voorraad bij de klant neer te leggen, zodat 

storingen waarvoor deze onderdelen nodig zijn extra snel kunnen worden verholpen.  

Wij analyseren zowel de toegevoegde waarde van de afzonderlijke methoden, als die van 

combinaties van meerdere methoden. Daarbij beogen wij een zo goed mogelijke afweging te 

maken tussen de te bereiken serviceniveaus en de relevante kosten.  

Het selectief gebruik van spoedleveringen wordt behandeld in hoofdstuk 3. In dat hoofdstuk 

analyseren wij een model waarin een fabrikant de mogelijkheid heeft om tot een spoedlevering 

over te gaan als het lokale magazijn geen voorraad heeft. We veronderstellen daarbij dat het 

onderdeel altijd vanuit een centraal magazijn of door een externe leverancier te leveren is, zij 

het tegen (zeer) hoge kosten. Het nut van deze optie hangt zowel af van het type onderdeel dat 

gevraagd wordt als van het type klant. Met dit model vinden wij een besparing van gemiddeld 

4.4% ten opzichte van de situatie waarin geen differentiatie gebruikt wordt. Ook zien wij dat de 

combinatie van selectieve spoedleveringen en voorraadreservering (critical level policies) grote 

toegevoegde waarde heeft, met een gemiddelde kostenbesparing van 14%. De combinatie van 

de twee differentiatieopties blijkt een groter effect te hebben dan de som der delen. In 

hoofdstuk 4 breiden wij het spoedleveringsmodel uit met de mogelijkheid voor laterale 

leveringen van nabijgelegen magazijnen, waarbij deze laterale leveringen alleen voor hoge-

prioriteitsklanten gebruikt mogen worden. Het toevoegen van laterale leveringen levert een 

extra kostenbesparing van gemiddeld 14% op ten opzichte van het model waar alleen selectieve 

spoedleveringen voor differentiatie gebruikt worden. Verdere uitbreiding van het model met de 

critical level policy leverde geen significante extra besparing op.  

In hoofdstuk 6 onderzoeken wij de mogelijkheid om voorraden op locatie bij de klanten als 

differentiatietechniek te gebruiken. Wij analyseren daar een multi-item model met één 

magazijn en meerdere klanten, zowel voor het geval dat alle vraag wordt nageleverd indien er 

geen voorraad is, als voor het geval dat een spoedlevering gebruikt wordt wanneer zowel de 
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klant als het magazijn buiten voorraad zijn en er geen onderdelen reeds onderweg zijn van het 

magazijn naar de klant toe. In het laatste geval is voor de analyse van het systeem een twee-

echelon model nodig dat nog niet in de literatuur was geanalyseerd. Wij beschrijven dit model 

en de bijbehorende analyse in hoofdstuk 5. Vergeleken met de setting waarin alle klanten 

uniforme service krijgen levert het gebruik van klantvoorraden een gemiddelde besparing op 

van 13% voor het geval dat alle vraag wordt nageleverd en 5% voor de situatie waarin 

spoedleveringen zijn toegestaan. Het combineren van klantvoorraden met de critical level policy 

levert verder geen significante extra besparing op. 

In hoofdstuk 7 onderzoeken wij tenslotte het gebruik van een prioriteitsmechanisme bij het 

toewijzen van service engineers aan klanten. We beschouwen een model met meerdere 

klanttypen waarin een beschikbare engineer steeds aan de klant met de hoogste prioriteit 

toegewezen wordt. Voor dit model ontwikkelen wij methoden waarmee we nauwkeurig en snel 

de kansverdeling van de wachttijd kunnen bepalen per klanttype. Deze methoden passen wij 

vervolgens toe op een case study bij een fabrikant van kopieer- en printsystemen om de 

prestaties op bepaalde serviceniveaus te kunnen toetsen.  
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